Syllabus Book

B. Tech. (Pharmaceutical Engineering)

P P Savani University

School of Engineering

Effective From: 2022-23

Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1-33
2	Syllabi of Second Year	34-73
3	Syllabi of Third Year	74-112
4	Syllabi of Fourth Year	113-127

FIRST YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. PHARMACEUTICAL ENGINEERING PROGRAMME AY:2022-23

					Teach	Feaching Scheme				Examination Scheme					
Sem	Course Code	se Code Course Title Offered By Contact Hours Credit		Credit Theory		Practical		Tutorial		Total					
				Theory	Practical	Tutorial	Total		CE	ESE	CE	ESE	CE	ESE	
	SESH1070	Fundamental of Mathematics	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SESH1210	Applied Physics	SH	3	2	0	5	4	40	60	20	30	0	0	150
	SEME1010	Engineering Graphics	ME	3	4	0	7	5	40	60	40	60	0	0	200
1	SEME1020	Engineering Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
	SEPE1010	1010 Basics of Pharmaceutical Sciences		3	2	0	5	4	40	60	20	30	0	0	150
	SEHV1010	Universal Human Values	SH	2	0	0	2	0	100	0	0	0	0	0	100
						Total	26	19							800
	SESH1080	Linear Algebra and Calculus	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SESH1240	Electrical & Electronics Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
	SECV1040	Basics of Civil & Mechanical Engineering	CV	4	2	0	6	5	40	60	20	30	0	0	150
2	SESH1250	Microbiology & Biochemistry	rry SH 4 2 0 6 5 40 60 20 30		0	0	150								
	SECE1010	Basics of Computer & Programming	CE	3	2	0	5	4	40	60	20	30	0	0	150
	CFLS1010	0 Linguistic Proficiency CFLS 2 0		0	0	2	2	40	60	0	0	0	0	100	
						Total	26	22							750

Department of Applied Science and Humanities

Course Code: SESH1070

Course Name: Fundamentals of Mathematics

Prerequisite Course(s): Algebra, Geometry, Trigonometry & Pre-Calculus till 12th

Standard level

Teaching & Examination Scheme:

Ī	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
	Theory	Practical	Tutorial	Credit	The	eory	Practical		Tuto	orial	Total
					CE	ESE	CE	ESE	CE	ESE	
ĺ	3	0	2	5	40	60	-	-	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- summarize concept of calculus to enhance ability of analyzing mathematical problems.
- acquire knowledge and ability to work with differentiation and integration for applications of mathematical techniques in engineering.
- develop the tool of power series for learning advanced Engineering Mathematics.
- Analyse and solve system of linear equations and understand characteristics of Matrices.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	8	28						
2.	Sequence and Series-I Convergence and Divergence, Comparison Test, IntegralTest, Ratio Test, Root Test, Alternating Series, Absolute and Conditional Convergence.	6	20						
	Section II								
Module No.	Content	Hours	Weightage in %						

	Sequence and Series-II			
3.	Power series, Taylor and Macluarin series,	6	20	
	Indeterminate forms and L'Hospitals Rule.			
	Matrix Algebra			
	Elementary Row and Column operations, Inverse of matrix,	4.0	2.2	
4.	Rank of matrix, System of Linear Equations, Characteristic	10	32	
	Equation, Eigen values and Eigen vector, Diagonalization,			
	Cayley Hamilton Theorem, Orthogonal Transformation.			

List of Tutorials:

Sr.	Name of Tutorial					
No.						
1.	Calculus-1	2				
2.	Calculus-2	2				
3.	Integration	2				
4	Sequence and Series-1	2				
5.	Sequence and Series-2	2				
6.	Sequence and Series-3	2				
7.	Matrix Algebra-1	2				
8.	Matrix Algebra-2	2				
9.	Matrix Algebra-3	2				
10.	Matrix Algebra-4	2				

Text Book:

Title	Author(s)	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir	Pearson
	and Joel Hass	
Elementary linear	Howard Anton and Chrish Rorres	Wiley
Algebra		

Reference Book:

Title	Author(s)	Publication
Advanced Engineering	E Kreyszig	John Wiley and
Mathematics		Sons
A textbook of Engineering	N P Bali and Manish Goyal	Laxmi
Mathematics		
Higher Engineering	B S Grewal	Khanna
Mathematics		
Engineering Mathematics	T Veerarajan	Tata Mc Graw Hill
For First Year		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1070	FUNDAMENTALS OF MATHEMATICS
CO 1	To recall the concepts of limit, continuity and differentiability for analysing
	mathematical problems.
CO 2	Explain concepts of limit, derivatives and integrals.
CO 3	Analyze the series for its convergence and divergence to slove real world problems.
CO 4	Evaluate linear system using matrices.
CO 5	Adapt the knowledge of eigenvalues and eigenvectors for matrix diagonalization

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Calculus	1, 2, 3,4
2	Sequence and Series-I	1, 2, 3, 4
3	Sequence and Series-II	1, 2, 3, 4
4	Matrix Algebra	1, 2, 3,4

Department of Applied Science & Humanities

Course Code: SESH1210 Course Name: Applied Physics Prerequisite Course(s): --

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						TOTAL		
Theory	Practical	Tutorial	Credit	Theory		Practical		Practical		Tutorial		
3	2	0	4	CE	ESE	CE	ESE	CE	ESE	150		
				40	60	20	30	0	0			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

- To assist students in preparing for a future in engineering, where physics principles can be used to enhance technology.
- Consciousness about the topics such as Quantum mechanics, Solid State Physics, Lasers and fiber, Semiconductors and electronics.

	Course Content: Section I				
Module No.	Content	Hours	Weightage in %		
	Quantum Mechanics:	06	12		
1.	Wave-Particle Duality, De-Broglie Matter Wave, Phase and Group				
	Velocity, Heisenberg Uncertainty Principle and its Applications,				
	Wave Function and its Significance, Schrodinger's Wave Equation.				
	Acoustic and Ultrasonic:	07	16		
2.	Introduction, Classification and Characterization of Sound, Sabine's				
	formula for reverberation (without derivation), Absorption				
	Coefficients, Sound Absorbing Materials, factors affecting the				
	acoustics of buildings and remedies, Sound Insulation, Ultrasonic,				
	Properties of Ultrasonic, Generation of Ultrasonic sound,				
	Applications of Ultrasonic.				
	Nanophysics	05	11		
3.	Nanoscale, Nanomaterials and Nanotechnology, Usual properties:				
	Surface to Volume Ratio and Quantum confinement, Unusual				
	Properties of Nanomaterials, Synthesis of Nanomaterials,				
	Applications of Nanomaterials.				
	SUPERCONDUCTIVITY:	05	11		
4.	Introduction of Superconductivity, General Properties of				
	superconductors, Types of superconductors, High Temperature				
	superconductors, Applications: Magnets, Josephson effect, SQUID,				
	Maglev, other.				

	Section II		
Module No.	Content	Hours	Weighta gein %
5.	NON LINEAR OPTICS 1: LASER – Introduction, Characteristics of LASER radiation, Absorption, Spontaneous and stimulated emission, Working of LASER with basic idea about Population Inversion, Pumping mechanism, Optical resonators, Nd:YAG Laser, Applications of LASER: Medical, Industrial, Communication and other.	07	16
6.	NON LINEAR OPTICS 2: FIBER OPTICS – Introduction of Optical Fiber, Advantages of Optical Fiber, Total Internal Reflection, Numerical Aperture and Acceptance angle, Types of Optical Fiber, Applications of Optical Fiber.	07	16
7.	ELECTRONICS: Semiconductors, Intrinsic and Extrinsic Semiconductor, PN junction Diode, characteristics of PN junction diode, Zener diode, LED, Photodiode, Solarcell, Advantages of Semiconductor Devices, Transistor (Working and characteristics), Transistor as an amplifier, Transistor as a switch, Transistor as an oscillator.	08	18

List of Practical:

Sr.	Name of the experiment	
No.		
1	Analysis of Errors	4
2	To measure diameter of a small spherical body using Vernier calipers and hence find	4
	its volume.	
3	To measure the diameter of a given object using screw gauge.	4
4	Verify ohm's law using ammeter and voltmeter.	2
5	To study the series and parallel connections of resistors.	2
6	To study the series and parallel connections of capacitors.	2
7	I-V characteristics of Light Emitting diode (LED)	2
8	I-V characteristics of Zener diode	2
9	To determine Numerical aperture and acceptance angle of an optical fiber	4

Text Book(s):

Title	Author/s	Publication
Concept of the Modern Physics	A. Beiser	Tata McGraw-Hill Education
Basic electrical engineering	Kothari and Nagrath	Tata McGraw-Hill Education
Lasers and Nonlinear Optics	G.D. Baruah	Pragati Prakashan
Solid State Physics:	S.O. Pillai	New Age Internation
Basic Electronics:		Publishers
Basic Electronics for Scientists and	Dennis L. Eggleston	Cambridge University Press
Engineers		

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva and practical performance consist of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1210	APPLIED PHYSICS				
CO 1	Understand the framework of quantum mechanics and apply the knowledge of basic				
	quantum mechanics to construct one dimensional Schrodinger's wave equation.				
CO 2	Classify the phenomenon of acoustics and ultrasonic in various engineering field and				
	apply it for various engineering and medical fields. interpret the concept of				
	nanotechnology and understand the synthesis and applications of nanomaterials from				
	technological prospect.				
CO 3	Discover the types and properties of superconductors. relate the behavior of				
	superconductors at high temperatures.				
CO 4	Describe the laser and articulate the idea of optical fiber communications and apply				
	the concepts of lasers and optical fiber communications in every possible sector.				
CO 5	Distinguish pure, impure semiconductors and characteristics of semiconductor				
	devices. This will be able to use basic concepts to analyze and design a wide range of				
	semiconductor devices.				

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Quantum Mechanics:	2,3
2	Acoustic and Ultrasonic:	1,3
3	Nanophysics	2,4
4	Superconductivity	2,6
5	Non linear optics-I	1,2
6	Non linear optics-II	2,3
7	Electronics	3,6

Department of Mechanical Engineering

Course Code: SEME1010

Course Name: Engineering Graphics

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minat	ion Sche	eme (M	larks)		
Theory Practical Tutorial C	Theory Practical Tutorial Credit	Th	eory	Pra	ctical	Tut	orial	Total		
Theory	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	04	00	05	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- know conventions and the methods of engineering drawing.
- interpret engineering drawings using fundamental technical mathematics.
- construct basic and intermediate geometry.
- improve their visualization skills so that they can apply these skills in developing new products.
- improve their technical communication skill in the form of communicative drawings.
- comprehend the theory of projection.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction: Importance of the Course; Use of Drawing Instruments and accessories; BIS – SP – 46; Lettering, Dimensioning and Lines; Representative Fraction; Types of Scales (Plain and Diagonal Scales); Construction of Polygons.		05			
2.	Engineering Curves: Classification and Application of Engineering Curves; Construction of Conics, Cycloidal Curves, Involutes and Spiral along with Normal and Tangent to each.	06	15			
3.	Principles of Projections: Types of Projections; Introduction of Principle Planes of Projections. Projection of Points & Line: Projection of Points in all four Quadrants; Projection of Lines with its inclination to one Referral Plane & two Referral Planes.	14	30			

	Projection of Plane:		
	Projection of Planes (Circular and Polygonal) with inclination		
	to one Referral Plane and two Referral Planes; Concept of		
	Auxiliary Projection Method.		
	Section II		
Module No.	Content	Hours	Weightage in %
	Projection and Section of Solids:		
4.	Projection of solids: Polyhedral, Prisms, Pyramids, Cylinder, Cone, Auxiliary Projection Method, One View, Two View and Three View Drawings. Missing View, Rules for Selection of Views; Sectional View, Section Plane Perpendicular to the HP & VP and other Various Positions, True Shape of Sections.	08	14
5.	Orthographic Projection: Types of Projections: Principle of First and Third Angle Projection - Applications & Difference; Projection from Pictorial view of Object, View from Front, Top and Sides; Full Section View.	07	18
6.	Isometric Projections and Isometric Drawing: Isometric Scale, Conversion of Orthographic views into Isometric Projection, Isometric View or Drawing.	07	18

List of Practical:

Sr.	Name of Practical	
No.		
1.	Introduction sheet (dimensioning methods, different types of line, construction of different polygon, divide the line and angle in parts, use of stencil, lettering)	08
2.	Plane scale and diagonal scale	04
3.	Engineering curves	08
4.	Projection of Points & Lines	06
5.	Projection of Planes	08
6.	Projection of solid & Section of solid	10
7.	Orthographic projection	08
8.	Isometric projection	08

Text Book(s):

Title	Author(s)	Publication
A Text Book of Engineering Graphics	P J Shah	S. Chand & Company Ltd., New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House, Anand

Reference Book(s):

Title	Author(s)	Publication			
Engineering Drawing	P.S.Gill	S. K. Kataria & sons, Delhi			
Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi			
Engineering Drawing made Easy	K. Venugopal	Wiley Eastern Ltd			

Web Material Link(s):

• http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva consists of 20 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks during End Semester Exam.
- Viva/Oral performance will consist of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEME1010	ENGINEERING GRAPHICS
CO 1	Learn and understand the bis standards, conventions and methods of
	engineering drawing.
CO 2	Explore the different methods to draw various engineering curves and its applications.
CO 3	Construct basic and intermediate geometry and comprehend the theory of projection.
CO 4	Improve visualization skills and apply it to develop a new product.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1	Introduction	1, 2
2	Engineering Curves	1, 2, 3
3	Principles of Projections	1, 2, 3
4	Projection and Section of Solids	2, 3, 4
5	Orthographic Projection	2, 3, 4
6	Isometric Projections and Isometric Drawing	2, 3, 4

Department of Mechanical Engineering

Course Code: SEME1020

Course Name: Engineering Workshop

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction: Introduction to Various Shops / Sections and Workshop Layouts, Safety Norms to be Followed in a Workshop.	-	-			
2.	Fitting Shop: Introduction of Fitting Shop; Safety; Making a Job as per Drawing including Marking and other Performing Operations.	-	-			
3.	Carpentry and Drilling Shop: Introduction of Carpentry Shop; Preparation of Job as per Drawing including Marking and other Performing Operations.	-	-			
4.	Sheet Metal Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	-	-			
5.	Smithy Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	-	-			
6.	Introduction to Machine Tools: Introduction and Demonstration of various Machine Tools like Lathe, Drilling, Grinding, Hack Saw Cutting etc.	-	-			

	Introduction to Welding & Plumbing:							
7.	Introduction	and	Demonstration	of	Welding	process.	-	-
	Introduction a	ınd De	monstration of Pl	umb	ing Shop.			

List of Practical:

Sr. No	Name of Practical	Hours
1.	Introduction and Demonstration of Safety Norms. Different Measuring	02
	Instruments.	02
2.	To Perform a Job of Fitting Shop.	06
3.	To Perform a Job of Carpentry Shop.	06
4.	To Perform a Job of Sheet Metal Shop.	06
5.	To Perform a Job of Black Smithy Shop.	04
6.	Introduction and Demonstration of Grinding & Hacksaw Cutting Machine.	02
7.	Introduction and Demonstration of Plumbing Shop & Welding Process.	04

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop Technology	Hajra Chaudhary S. K.	Media promoters &
Vol. I	Haji a Chaudhai y S. K.	Publishers
Workshop Technology Vol. I and II	Raghuvanshi B.S.	Dhanpat Rai & Sons

Reference Book(s):

Title	Author(s)	Publication
Workshop Technology Vol. I	W.A.J. Chapman	Edward Donald Publication
Workshop Practices	H S Bawa	Tata McGraw-Hill
Basic Machine Shop Practice Vol. I, II	Tejwani V. K.	Tata McGraw-Hill

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Internal Viva consists of 20 Marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEME1020	ENGINEERING WORKSHOP
CO 1	Understand the various measuring instruments.
CO 2	Understand the safety norms required in the workshop.
CO 3	Understand the application of various tools required for different operations.
CO 4	Remember the process of manufacture from a given raw material.
CO 5	Explain various manufacturing processes in machine shop.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1	Introduction	1,2,4
2	Fitting shop	1,2,3
3	Carpentry and drilling shop	1,2,3
4	Sheet metal shop	2,3,4
5	Smithy shop	2,3,4
6	Introduction to machine tools	2,3,4
7	Introduction to welding and plumbing	2,3,4

Department of Pharmaceutical Engineering

Course Code: SEPE1010

Course Name: Basics of Pharmaceutical Sciences

Prerequisite Course(s): ---

Teaching & Examination Scheme:

	Teacl	ning Scheme	e (Hours/W	eek)	Examination Scheme (Marks)						
	Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
				Credit	CE	ESE	CE	ESE	CE	ESE	Total
	3	2	0	4	40	60	20	30	-	-	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- Explain the gross morphology, structure and functions of various organs of the human body.
- Describe the various homeostatic mechanisms and their imbalances.
- Identify the various tissues and organs of different systems of human body.
- Perform the various experiments related to special senses and nervous system.
- Appreciate coordinated working pattern of different organs of each system

	Section I		
Module	Content	Hours	Weightage
No.			in %
1.	Introduction to Human body, cells, tissues, organs and	23	50
	systems		
	Definition and scope of anatomy and physiology, levels of		
	structural organization and body systems, basic life processes,		
	homeostasis, basic anatomical terminology		
	Structure and functions of cell, transport across cell		
	membrane, cell division, cell junctions. General principles of		
	cell communication, intracellular signalling pathway		
	activation.		
	Classification of tissues, structure, location and functions of		
	epithelial, muscular and nervous and connective tissues.		
	Systems: Introduction, classification, structure of organs		
	involved, electrophysiology and functions of		
	Nervous systems		
	Endocrine system		
	Circulatory system		
	Cardiovascular system		
	Digestive system		

	Respiratory system		
	Excretory system		
	Reproductive system		
	Skeleton system		
	Section II		
Module	Content	Hours	Weightage in
No.			%
2.	Pathophysiology of various diseases Basic principles of Cell injury, inflammation and repair Hypertension, congestive heart failure, ischemic heart disease (angina, myocardial infarction, atherosclerosis and arteriosclerosis) Asthma, Chronic obstructive airways diseases Acute and chronic renal failure Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia. Diabetes, thyroid diseases, disorders of sex hormones Epilepsy, Parkinson's disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer's disease. Peptic Ulcer, Inflammatory bowel diseases, jaundice, hepatitis (A, B, C, D, E, F) alcoholic liver disease. Rheumatoid arthritis, osteoporosis, and gout classification, etiology and pathogenesis of cancer Rheumatoid Arthritis, Osteoporosis, Gout Classification, etiology and pathogenesis of Cancer Meningitis, Typhoid, Leprosy, Tuberculosis Urinary tract	12	30
	Infections AIDS, Syphilis, Gonorrhea		
3.	Natural medicines and holistic approaches of	10	20
	management of diseases. Role of natural medicines in allopathy and traditional systems of medicines like Ayurveda, Unani, Siddha, and Homeopathy systems of medicine. Cultivation, Collection, Processing and storage of drugs of natural origin and Conservation of medicinal plants. Concept of Tridosha and Ayurvedic principles of treatment of diseases.		

List of Practical/Tutorial:

		ı			
Sr.	Name of Practical I				
No					
1.	Study of compound microscope.	2			
2.	Microscopic study of epithelial and connective tissue	3			
3.	Microscopic study of muscular and nervous tissue	3			

4.	Recording of body temperature, blood pressure, heart rate and lung vital	3
	capacity.	
5.	Determination of bleeding time, clotting time, Hb content and blood group.	3
6.	Study of digestive, respiratory, cardiovascular systems, urinary and	3
	reproductive systems with the help of models, charts and specimens.	
7.	Recording of basal mass index	2
8.	Demonstration of total blood count by cell analyser.	3
9.	Permanent slides of vital organs and gonads.	4
10.	Determination of cloud point of a surfactant in the presence of salts.	4
	Total	30

Text Book(s):

Title	Author/s	Publication	
Essentials of Medical Physiology	K. Sembulingam and P. Sembulingam	Jaypee brother's medical publishers, New Delhi.	
Anatomy and Physiology in Health and Illness	Kathleen J.W. Wilson, Churchill Livingstone	New York Publishers	
Text book of Medical Physiology	Arthur C, Guyton and John.E. Hall	Miamisburg, OH, U.S.A.	
Practical workbook of Human Physiology	K. Srinageswari and Rajeev Sharma	Jaypee brother's medical publishers, New Delhi.	

Reference book:

Title	Author/s	Publication
Physiological basis of Medical Practice-Best and Tailor	Williams & Wilkins Co	Riverview, MI USA
Textbook of Medical Physiology	Arthur C, Guyton and John. E. Hall.	Miamisburg, OH, U.S.A.
Human Physiology (vol 1 and 2)	Dr. C.C. Chatterrje	Academic Publishers Kolkata

Course Evaluation:

Theory:

- Continuous Evaluation consists of two internal exams which carry 30 marks each and the final evaluation will be counted with average of 30 Marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End semester examination consists of 60 marks.

Practical:

- Continuous Evaluation consist of performance based on practical which should be evaluated out 10 marks each in the next turn and average of the same will be converted to 10 marks.
- Internal viva component carries 10 marks of evaluation.
- Practical performance/quiz/drawing/test consists of 15 marks evaluation during end semester exam.
- Viva/Oral performance consists of 15 marks evaluation during end semester examination.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE1010	BASIC OF PHARMACEUTICAL SCIENCES					
CO 1	Describe basics functions of cells, tissues, organs and systems involved in normal					
	functioning of human body.					
CO 2	Summarize functional characteristics of various systems.					
CO 3	Describe the fundamental physiological mechanism involves in demonstrated					
	practical.					
CO 4	Interlinking various systems in terms of feedback mechanisms and perform					
	various tests related to blood cells counts which relates with the diagnosis of					
	various disease conditions.					
CO 5	Appreciate the value of indigenous medicinal systems of india like ayurveda in					
	treatment of various diseases.					

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	

Module No	Content	RBT Level
1	Introduction to Human body, cells, tissues, organs and systems	1,2
2	Pathophysiology of various diseases	2,3,4
3	Natural medicines and holistic approaches of management of diseases	1,2,3,4

Department of Applied Science and Humanities

Course Code: SESH1080

Course Name: Linear Algebra & Calculus

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)								
Theory	Practical Tutorial		Credit	The	ory	Prac	tical	Tuto	orial	Total	
THEOTY	Tractical	Tutoriai Civ	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	2	5	40	60	-	-	50	0	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about and work with vector space, linear transformation and inner productspace.
- apply concepts of linear algebra for solving science and engineering problems.
- introduce the concept of improper integral and Beta-Gamma Function.
- develop the tool of Fourier series for learning advanced Engineering Mathematics.

	Section I			
Module No.	Content	Hours	Weightage in %	
1.	Vector Space Concept of vector space, Subspace, Linear Combination, Linear Dependence and Independence, Span, Basis and Dimension, Row Space, Column Space and Null Space, Rank and Nullity.	9	20	
2.	Linear Transformation Introduction of Linear Transformation, Kernal and Range, Rank and Nullity, Inverse of Linear Transformation, Rank Nullity Theorem, Composition of Linear Maps, Matrix associated with linear map.	7	15	
3.	Inner Product Space Inner Product, Angle and Orthogonality, Orthogonal projection, Gram- Schmidt process and QR Decomposition, Least square decomposition, Change ofbasis.	7	15	

	Section II		
Module	Content	Hours	Weightage
No.			in %
4.	Beta and Gamma function Improper Integrals, Convergence, Properties of Beta and Gamma Function, Duplication Formula (withoutproof)	6	14
5.	Fourier Series Periodic Function, Euler Formula, Arbitrary Period, Even and Odd function, Half Range Expansion, Parseval's Theorem	8	18
6.	Curve tracing Tracing of Cartesian Curves, Polar Coordinates, Polar and Parametric Form of Standard Curves, Areas and Length in Polar co-ordinates	8	18

List of Tutorial:

Sr.	Name of Tutorial	
No.		
1.	Vector Space-1	4
2.	Vector Space-2	2
3.	Linear Transformation-1	2
4	Linear Transformation-2	2
5.	Inner Product-1	2
6.	Inner Product-2	2
7.	Beta and Gamma Function-1	2
8.	Beta and Gamma Function-2	2
9.	Curve tracing-1	2
10.	Curve tracing-2	2

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel	Pearson
	Hass	
Elementary Linear	Howard Anton and Chrish Rorres	Wiley
Algebra		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of durationand average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the CourseCoordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1080	LINEAR ALGEBRA & CALCULUS
CO 1	Determine the basis and dimension of vector spaces and subspaces.
CO 2	Discuss the matrix representation of a linear transformation given bases of the relevant
	vector space.
CO 3	Identify the ordinary differentials and partial differentials and solve the maximum and
	minimum value of function.
CO 4	Classify gamma, beta functions & their relation which is helpful to evaluate some definite
	integral arising in various branch of engineering.
CO 5	Construct the graphs for function with intervals and identify more application for
	function.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

•		
Module No	Content	RBT Level
1	Vector Space	1, 2, 3, 4
2	Linear Transformation	1, 2, 3, 4
3	Inner product space	1, 2, 3, 4
4	Partial Derivatives	1, 2, 4, 5
5	Beta and Gamma Function	1, 2, 4, 5
6	Curve Tracing	1, 2, 4, 5, 6

P P Savani University

School of Engineering

Department of Applied sciences & Humanities

Course Code: SESH1240

Course Name: Electrical & Electronics Workshop

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Exami	nation S	cheme (Marks)				
Theory	y Practical Tutorial Cr		y Practical Tutorial Credit	Theor	y	Praction	cal	Tutori	al	Total
Theory	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify basic fundamental electronic components in circuits.
- learn to use common electronic component on breadboard.
- understand components of instruments, terminology and applications.

List of Practical:

Sr No	Name of Practical	Hours
1	Understanding of electronic component with specification.	2
2	Understanding of Galvanometer, Voltmeter, Ammeter, Wattmeter and Multimeter	2
3	Understanding of breadboard connections	2
4	Drawing and wiring of basic circuits on breadboard	2
5	Verification of Ohm's law	2
6	Half wave, full wave using centre tap transformer and full wave bridgerectifier	3
7	Kirchhoff's laws (KVL,KCL).	3
8	Faraday's laws of Electromagnetic Induction and Electricity Lab	4
9	LDR characteristics	2
10	Study of CRO, measurement of amplitude (voltage) & time period (frequency)	4
11	PCB designing	4

Text Book:

Title	Author/s	Publication
Electronic Principles	Albert Malvino and David J Bates	Mc Graw Hill(7th Edition)

Reference Book:

Title	Author/s	Publication
Electronic Devices	Thomas L. Floyd	Pearson (7th Edition)
Electronic Devices and Circuits	David A. Bell	Oxford Press (5th Edition)
Integrated Electronics	Jacob Millman, Christos	Tata McGraw Hill (2nd Edition)

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 20 Marks.
- Internal viva consists of 20 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1240	ELECTRICAL & ELECTRONICS WORKSHOP
CO 1	Identify the ability to design various electronic circuit on a bread board.
CO 2	Recognize the basic electronic devices and components in a circuit connection.
CO 3	Identify the ability to design a PCB.
CO 4	Define the practical side of basic physics laws.

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Electronic Components	1,2,3,4
2	Electronic Devices	1,2,3,4
3	Understanding of Breadboard	1,2,4,5,6
4	Wiring of Breadboard	1,2,4,5,6
5	Ohm's Law	1,2,3,4
6	Rectifiers	1,2,3,5,6
7	KCL & KVL	1,2,3,4,6
8	LDR	1,2,3,6
9	Electricity Lab	1,2,3,4
10	CRO	1,2,4,5
11	PCB	1,2,6

Department of Civil Engineering

Course Code: SECV1040

Course Name: Basics of Civil & Mechanical Engineering

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Theory Practical		Practical Tutorial Credit		y	Practi	cal	Tutor	ial	Total
Theory	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
4	2	0	5	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- study the fundamentals of mechanical systems.
- study and appreciate significance of mechanical engineering in different fields of engineering.
- carry out simple land survey and recent trends in civil engineering.
- understand components of building, building terminology and construction materials.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Civil Engineering: An Overview Introduction, Branches, Scope, Impact, Role of Civil Engineer, Unit of Measurement, Unit Conversion (Length, Area, Volume)	03	04
2.	Introduction to Surveying and Levelling: Introduction, Fundamental Principles, Classification Linear Measurement: Instrument Used, Chaining on Plane Ground, Offset, Ranging Angular Measurement: Instrument Used, Meridian, Bearing, Local Attraction Levelling: Instrument Used, Basic Terminologies, Types of Levelling, Method of Levelling Modern Tools: Introduction to Theodolite, Total Station, GPS	07	12
3.	Building Materials and Construction: Introduction (Types and Properties) to Construction Materials Like Stone, Bricks, Cement, Sand, Aggregates,	10	14

	Concrete, Steel. Classification of Buildings, Types of Loads Acting on Buildings, Building Components and their Functions, Types of Foundation and Importance, Symbols Used in Electrical Layout, Symbols Used for Water Supply, Plumbing and Sanitation		
4.	Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment-Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE.	04	08
5.	Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material	06	12
	Section II		
Module No.	Content	Hours	Weightage in %
6.	Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics	04	06
7.	Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value	04	06
8.	Basics of Steam Generators: Introduction, Classification, Cochran, Lancashire and Babcock and Wilcox Boiler, Functioning of Different Mountings and Accessories	LAB	12
9.	Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines	12	14
10.	Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	10	12

List of Practical:

Sr. No.	Name of Practical				
1.	Unit conversation Exercise and Chart preparation of building components	02			
2.	Linear measurements	02			
3.	Angular measurements	02			
4.	Determine R. L of given point by Dumpy level. (Without Change Point)	02			
5.	Determine R. L of given point by Dumpy level. (With Change Point)	02			
6.	Presentation on various topics as in module about recent trends	04			
7.	To understand construction and working of various types of boilers	04			
8.	To understand construction and working of mountings	04			
9.	To understand construction and working of accessories	04			
10.	To understand construction and working 2 –stroke & 4 –stroke Petrol	02			
10.	Engines	02			
11.	To understand construction and working 2 –stroke & 4 –stroke Diesel	02			
11.	Engines	02			

Text Book(s):

Title	Author(s)	Publication		
Elements of Mechanical Engineering	S. B. Mathur,	Dhanpat Rai & Sons		
Elements of Mechanical Engineering	S. Domkundwar	Publications		
Elements of Mechanical Engineering	Sadhu Singh	S. Chand Publications		
Elements of Civil Engineering	Anurag A. Kandya	Charotar Publication		
Surveying Vol. I & II	Dr. B. C. Punamia	Laxmi Publication		

Reference Book(s):

Title	Author(s)	Publication		
Thermal Engineering	R. K. Rajput	Laxmi Publications		
Basic Mechanical Engineering	T.S. Rajan	Wiley Eastern Ltd., 1996.		
Surveying and Levelling	N. N. Basak	Tata McGraw Hill		
Surveying Vol. I	S. K. Duggal	Tata McGraw Hill Oxford University		
Surveying and Levelling	R. Subramanian			
Building Construction and	G. S. Birdie and T. D. Ahuja	Dhanpat Rai Publishing		
Construction Material				
Engineering Material	S.C. Rangwala	Charotar Publication		

Web Material Link(s):

- http://nptel.ac.in/course.php
- http://nptel.ac.in/courses/105107157/
- http://nptel.ac.in/courses/105101087/
- http://nptel.ac.in/courses/105107121/
- http://nptel.ac.in/courses/105104100/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECV1040	BASICS OF CIVIL AND MECHANICAL ENGINEERING					
CO 1	Apply the principles of basic mechanical engineering.					
CO 2	Comprehend the importance of mechanical engineering equipment like ic engine and					
	power transmission elements.					
CO 3	Understand different structural loads, components, materials and equipment used in the					
	construction of a building.					
CO 4 Adapt various methods of area plotting and marking before starting the						
	activity.					

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Civil Engineering: An Overview	1, 2, 3, 4
2	Introduction to Surveying and Levelling	1, 2, 3, 4
3	Building Materials and Construction	1, 2, 3, 4
4	Construction Equipment	1, 2, 4, 5
5 Recent Trends in Civil Engineering		1, 2, 4, 5
6 Basic Concepts of Thermodynamics		1, 2, 4, 5, 6
7	Fuels and Energy	2,3,4
8	Basics of Steam Generators	3,4,5
9	Basics of I.C Engines	2,3,4
10	Power Transmission Elements	1, 2, 3, 4

Department of Science & Humanities

Course Code: SESH1250

Course Name: Microbiology & Biochemistry

Prerequisite Course(s): ---

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)			ks)					
Theory	Practical	cal Tutorial Credit		Practical Tutorial		The	eory	Prac	ctical	Tut	orial	Total
THEOTY	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
4	2	0	5	40	60	20	30	-	-	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand methods of identification, cultivation and preservation of various microorganisms
- learn importance of sterilization in microbiology. and pharmaceutical industry
- learn sterility testing of pharmaceutical products.
- understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.
- understand the metabolism of nutrient molecules in physiological and pathological conditions.
- understand the genetic organization of mammalian genome and functions of DNA in the synthesis of RNAs and proteins.

Section-I						
Module	Content	Hours	Weightage			
No.			in %			
1.	Introduction to Microbiology	10	15			
	Introduction, history of microbiology, its branches, scope and					
	its importance. Introduction to Prokaryotes and Eukaryotes					
	Study of ultra-structure and morphological classification of					
	bacteria, nutritional requirements, raw materials used for					
	culture media. Study of different types of phase contrast					
	microscopy, dark field microscopy and electron microscopy					
2.	Sterilization	12	15			
	Study of principle, procedure, merits, demerits and					
	applications of Physical, chemical and mechanical method of					
	sterilization. Evaluation of the efficiency of sterilization					
	methods, Equipment employed in large scale sterilization.					
	Sterility indicators. Sterility testing of products (solids,					
	liquids, ophthalmic and other sterile products) according to IP,					
	BP and USP.					

3.	Pharmaceutical Microbiology	8	20
Э.	Types of spoilage, factors affecting the microbial spoilage of	0	20
	pharmaceutical products, sources and types of microbial		
	contaminants, assessment of microbial contamination and		
	spoilage. Preservation of pharmaceutical products using		
	antimicrobial agents, evaluation of microbial stability of		
	formulations. Growth of animal cells in culture, general		
	procedure for cell culture, Primary, established and		
	transformed cell cultures. Application of cell cultures in		
	pharmaceutical industry and research.		
	Section-II	•	
Module	Content	Hours	Weightage
No.			in %
4.	Carbohydrate, lipid and Amino acid metabolism	10	15
••	Glycolysis – Pathway, energetics and significance Citric acid	10	10
	cycle- Pathway, energetics and significance, HMP shunt and its		
	significance; Glucose-6-Phosphate dehydrogenase (G6PD)		
	deficiency, Glycogen metabolism Pathways and glycogen		
	storage diseases (GSD) Gluconeogenesis- Pathway and its		
	significance, Hormonal regulation of blood glucose level and		
	Diabetes mellitus. Electron transport chain (ETC) and its		
	mechanism. β-Oxidation of saturated fatty acid (Palmitic		
	acid), Formation		
	and utilization of ketone bodies; Biological significance of		
	cholesterol and conversion of cholesterol into bile acids,		
	steroid hormone and vitamin D.		
5.	Biomolecules and Bioenergetics	8	15
	Introduction, classification, chemical nature and biological		
	role of carbohydrate, lipids, nucleic acids, amino acids and		
	proteins.		
	Concept of free energy, endergonic and exergonic reaction,		
	Relationship between free energy, enthalpy and entropy;		
	Redox potential. Energy rich compounds; classification;		
	biological significances of ATP and cyclic AMP		
6.	Enzymes	6	10
	Introduction, properties, nomenclature and IUB classification		
	of enzymes Enzyme kinetics. Enzyme inhibitors with		
	examples, Regulation of enzymes: enzyme induction and		
	repression, allosteric enzymesregulation		
	Therapeutic and diagnostic applications of enzymes and		
	isoenzymes Coenzymes –Structure and biochemical functions		
	,		16
7.	Nucleic acid metabolism and genetic information transfer	6	10
	Biosynthesis of purine and pyrimidine nucleotides Catabolism		
	of purine nucleotides and Hyperuricemia and Gout Disease		
	Organization of mammalian genome Structure of DNA and		
	organization of manimum genome structure of Birit und		
	RNA and their functions DNA replication (semi conservative		

Translation or Protein synthesis and inhibitors	

List of Practical/Tutorial:

Sr.	Name of Practical	Hours		
No				
1.	Introduction and study of different equipment and processing, e.g., B.O.D.			
	incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer,			
	refrigerator, microscopes used in experimental microbiology.			
2.	Sterilization of glassware, preparation and sterilization of media.	3		
3.	Sterility testing of pharmaceuticals	3		
4.	Staining methods- Simple, Grams staining and acid-fast staining	3		
	(Demonstration with practical).			
5.	Bacteriological analysis of water	3		
6.	Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose,	3		
	Sucrose and starch)			
7.	Identification tests for Proteins (albumin and Casein)	3		
8.	Determination of blood creatinine	3		
9.	Determination of blood sugar	3		
10.	Determination of serum total cholesterol	3		
	Total	30		

Text Book:

Title	Author/s	Publication	
Principles of Biochemistry	Lehninger	WH Freeman	
Harper's Biochemistry	Robert K. Murry, Daryl K. Granner and Victor W. Rodwell.	Wiley India Edition	
Pharmaceutical Microbiology	W.B. Hugo and A.D. Russel	Blackwell Scientific publications, Oxford	

Reference Book:

Title	Author/s	Publication
Industrial Microbiology, 4th edition	Prescott and Dunn.	CBS Publishers &
		Distributors, Delhi
Microbiology	Pelczar, Chan Kreig Rodwell.	Tata McGraw Hill
Cooper and Gunn's: Tutorial Pharmacy	Cooper and Gunn	CBS Publisher and
		Distribution.

Course Evaluation:

Theory:

- \bullet Continuous Evaluation consists of two internal exams which carry 30 marks each and the final evaluation will be counted with average of 30 Marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End semester examination consists of 60 marks

Practical:

- Continuous Evaluation consist of performance based on practical which should be evaluated out of 10 marks each in the next turn and average of the same will be converted to 10 marks.
- Internal viva component carries 10 marks of evaluation.
- Practical performance/quiz/drawing/test consists of 15 marks evaluation during end semester exam.
- Viva/Oral performance consists of 15 marks evaluation during end semester examination.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1250	MICROBIOLOGY & BIOCHEMISTRY
CO 1	Knowledge of sterilize consumables to be used in microbial experiments.
CO 2	Perform sterility testing and microbial assay of pharmaceutical products.
CO 3	Describe applications of equipment used in microbiology laboratory.
CO 4	Identify biochemical aspects of cell metabolism and enzyme.
CO 5	Summarize metabolic pathway of important biomolecules.

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Microbiology	1,2
2	Sterilization	3,4
3	Pharmaceutical Microbiology	1,2
4	Carbohydrate, lipid and Amino acid metabolism	2,4,5
5	Biomolecules and Bioenergetics	1,2
6	Enzymes	2,3,4
7	Nucleic acid metabolism and genetic information	1,2,5
	transfer	

Department of Computer Engineering

Course Code: SECE1010

Course Name: Basics of Computer and Programming

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)		
Theory	Practical	Tutorial	Credit		eory	Practical		Tut	orial	Total
Theory			Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic components of computer system.
- identify appropriate approach to computational problems.
- develop logic building and problem solving skill.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction to Computer and its Architecture: Introduction and Characteristics, Generation, Classification, Applications, Central Processing Unit, Communication between Various Units, Processor Speed, Various Input and Output Devices.	03	10
2.	Memory and Operating Systems: Introduction to Memory, Memory Hierarchy, Primary Memory and its Type, Secondary Memory, Classification of Secondary Memory, Various Secondary Storage Devices and their Functioning, their Merits and Demerits, Evolution of Operating System, Types and Functions of Operating Systems,		15
3.	Recent Advances in Computer: Introduction to Emerging Areas like Artificial Intelligence, IoT tools, Data Science, Sensors, 3D Printing, Automization in the field of Civil, Mechanical and Chemical.	05	10
4.	Computer Programming Language: Introduction to different types of Programming Languages, Flowcharts and Algorithms. Introduction to C Programming Language, Features of C, Structure of C Program, Development of Program, Types of Errors, Debugging and Tracing Execution of Program.	08	15

	Section II					
Module No.	Content	Hours	Weightage in %			
5.	Constants, Variables and data Types: Character Set, C tokens, Keyword, Constants and Variables, Data Types - Declaration and Initialization, User define type Declarations Typedef, Enum, Basic Input and Output Operations, Symbolic Constants		10			
6.	Operators and Expression and Managing I/O operations: Introduction to Operators and its Types, Evaluation of Expressions, Precedence of Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associativity. Managing Input and Output, Reading a Character, Writing a Character, Formatted Input, Formatted Output.	07	16			
7.	Conditional statement and branching: Decision Making & Branching: Decision Making with If & If Else Statements, If - Else Statements (Nested Ladder), The Switch & go - to Statements, The Ternary (?:) Operator Looping: The While Statement, The Break Statement & The Do. While Loop, The FOR Loop, Jump Within Loops - Programs.	06	12			
8.	Arrays and Strings: Introduction to Array, One Dimensional Array, Two Dimensional Arrays, Declaring and Initializing String Variables, Arithmetic Operations on Characters, Putting Strings Together, Comparison of Two Strings, Basic String Handling Functions	05	12			

List of Practical:

Sr. No	Name of Practical	Hours
1.	Introduction to Basic Command	04
2.	Word Processing, Spreadsheets and Presentation Exercises	06
3.	Introduction to Octave Environment	04
4.	Implementation in C for conditional statement and branching	06
	Implementation of if, ifelse, nested ifelse and switch statements	
	Implementation of while loop, dowhile loop and for loop	
5.	Implementation of 1-D and 2-D array	06
6.	Implementation of in built string functions, application programs of array	04
	and strings	

Text Book(s):

Title	Author(s)	Publication
Programming in ANSI C	E. Balagurusamy	Tata McGraw Hill
Introduction to Computer Science	ITL Education Solutions	Pearson Education
	Limited	

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Let Us C	Yashavant P. Kanetkar	Tata McGraw Hill
Introduction to C Programming	Reema Thareja	Oxford Higher Education
Programming with C	Byron Gottfried	Tata McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical, which will be evaluated out of 10 per each practical. At the end of the semester, the average of the entire practical will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/test consists of 15 marks during End Semester Examination.
- Viva/Oral performance consists of 15 marks during End Semester Examination.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECE1010	BASICS OF COMPUTER PROGRAMMING	
CO 1	Observe the different types of operating systems and its functionalities.	
CO 2	Explore new emerging area in computer field.	
CO 3	Apply basic principles of imperative and structural programming to solve complex problems.	
CO 4	Classify the types of errors occur while running the program.	

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Computer and its Architecture	1,2
2	Memory and Operating Systems	1,3
3	Recent Advances in Computer	1,2
4	Computer Programming Language	2,3,4
5	Constants, Variables and data Types	3,4,5,6
6	Operators and Expression and Managing I/O operations	2,3,4
7	Conditional statement and branching	1,4,5,6
8	Arrays and Strings	2,4,5

SECOND YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B.TECH. SECOND YEAR PHARMACEUTICAL ENGINEERING PROGRAMME

	0			Teach	ing Schen	ne			Е	xaminat	ion Sche	me		
Sem	Course Code	Course Name		Contact Hours		Credit	Theory		Practical		Tute	oria	Total	
	Couc		Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ES	Total
	SEPE2010	Pharmaceutical Chemistry	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE2020	Physical Pharmaceutics	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE2910	Industry Aligned Learning-I	1	0	0	1	1	100	0	0	0	0	0	100
	SECH2010	Chemical Process Calculations	3	0	1	4	4	40	60	0	0	50	0	150
	SECH2020	Mechanical Operations	3	2	0	5	4	40	60	20	30	0	0	150
3	SECH2040	Chemical Engineering Materials & Metallurgy	2	0	0	2	2	40	60	0	0	0	0	100
	CFLS1020	Global communication skills	2	0	0	2	2	40	60	0	0	0	0	100
	SEPE2930	Industrial Exposure		2		0	2	0	0	100	0	0	0	100
		Total				22	22							950
	SEPE2040	General Pharmacology-I	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE2050	Molecular Biology & Genetic Engineering	4	2	0	6	5	40	60	20	30	0	0	150
	SEPE2920	Industry Aligned Learning-II	2	0	0	2	2	100	0	0	0	0	0	100
	SECH2050	Fluid Flow operations	3	2	0	5	4	40	60	20	30	0	0	150
4	SECH2061	Physical, Inorganic & Analytical Chemistry	3	2	0	5	4	40	60	20	30	0	0	150
	SECH2070	Chemical Engineering Thermodynamics -I	3	0	2	5	5	40	60	0	0	5	0	150
	CFLS3010	Foreign Language-I	2	0	0	2	2	40	6	0	0	0	0	100
	SEPD3040	Integrated Personality Development Course-I	2	0	0	2	2	100	0	0	0	0	0	100
		Total				30	26							1000

Department of Pharmaceutical Engineering

Course Code: SEPE2010

Course Name: Pharmaceutical Chemistry

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Dragtical	Dragtical Tutorial	C d:+	Theory		Practical		Tutorial		Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Basic knowledge of reactive intermediates.
- The core concepts of organic chemistry i.e. resonance, hyper conjugation, inductive effect etc. and their application.
- Knowledge of the increasingly important role played by organic and transition metals reagents with their corresponding proposed reaction mechanisms

Section I								
Module No.	Content	Hours	Weightage in %					
1.	Principles of test for purity in pharmaceutical substances Identification and characterisation of impurities in pharmaceutical substances, Limit tests: Definition, importance, general procedure for limit test for chlorides, sulphates, iron, arsenic, heavy metals, lead and modifications with suitable examples.	07	15					
2.	Reactive Intermediates & Polar Effects Concepts of aromaticity- Huckel's Rule, benzenoid (Naphthalene) and non-benzenoid (Azulene) aromatic compounds. Definition, generation, stability, structure and reactivity of free radicals, carbocations, carbanions, carbenes. Inductive effect, electrometric effect, resonance effect, hyper conjugation, steric inhibition of resonance- examples. The influence of these effects on the acidity and basicity of organic compounds.	10	20					
3.	Reagents in Organic Synthesis Synthesis and application of Grignard reagent, LDA, DIBAL, Zn-Hg/HCl, DCC.	05	15					

	Section II		
Module No.	Content	Hours	Weightage in %
4.	Mechanisms of Organic Reactions Mechanism of alkyl and aryl halides, mechanism of aromatic electrophilic and nucleophilic substitution - alcohols, aldehydes, ketones, carboxylic acids. Organic named reactions Friedel-Craft reaction, Beckmann rearrangement, Aldol condensation, Benzoin, Hofmann rearrangement, Fries rearrangement.	08	15
5.	Stereochemistry Introduction, stereoisomerism, geometrical isomerism,E-Z system of nomenclature, Optical isomerism, Symmetry and chirality. Optical isomerism in lactic acid and tartaric acid, Enantiomers, diastereomers, conformational analysis of 1,2 dichloride Ethane and Cyclohexane.	08	20
6.	Important inorganic gases Oxygen, Nitrogen, Nitrous Oxide, carbon dioxide, Helium, Ammonia and their compounds as per I.P.	07	15

List of Experiments

S.no	Experiment list	Hours
1	Identification of organic compounds based on detection of elements.	03
2	Determination of physical constants, group solubility, functional groups and preparation of derivatives.	02
3	Estimation of functional groups like carboxyl, hydroxyl, amino, acetyl, carbonyl, unsaturation, ester group and amino nitrogen.	24
4	Determination of viscosity of a liquid using Ostwald Viscometer	02
5	Determination of mutual solubility curve of phenol and water.	03
6	Determination of end point in a typical titration by Conductometric method.	03
7	Determination of velocity constant of a first order reaction.	02
8	Determination of end point in a typical titration by Conductometric method.	02

Text Book(s):

Title	Author/s	Publication
Practical Pharmaceutical Chemistry	Beckett, A.H. and	CBS Publications, 1997.
	Stenlake, J.B.	
Pharmaceutical Chemistry" Organic &	Chatrical C D	Himalaya
Inorganic	Chatwal, G.R.	Publications.

Reference Book(s):

110101010100				
Title	Author/s	Publication		
Pharmaceutical Chemistry: Therapeutic				
aspects of Biomacromolecules	Blanders, Christie M.	John Wiley & Sons		
Textbook of Pharmaceutical Chemistry"	Mohammed Ali	CBS Publications, 1997.		
Part-I Inorganic, Part II Organic Chemistry	1.1011a111111cu Till	abb i ublications, 1777.		

Course Evaluation:

Theory:

• Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.

- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE2010	PHARMACEUTICAL CHEMISTRY					
CO 1	Interpret mechanism of attack of electrophiles and nucleophiles.					
CO 2	Acquire the knowledge of optical isomerism, geometrical isomerism and conformational					
	isomerism.					
CO 3	Identification of drugs containing various heterocyclic moieties.					
CO 4	knowledge in limit tests of impurities in pharmaceutical substances.					
CO 5	Ability to prepare pharmaceutical aids with knowledge of inorganic gases and inorganic					
	compounds.					

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Principles of test for purity in pharmaceutical	2,4,5
	substances	
2	Reactive Intermediates & Polar Effects	1,2
3	Reagents in Organic Synthesis	1,2,5
4	Mechanisms of Organic Reactions	1,2,4,5
5	Stereochemistry	1,2
6	Important inorganic gases	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE2020

Course Name: Physical Pharmaceuticals

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory	Dragtical	1 Tutorial Cradi		actical Tutorial	Dragtical Tutorial Cre	Drastical Tutorial Credit Theory		Practical		Tutorial		Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	00	00	03	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- \bullet $\,$ $\,$ Understand various physicochemical properties of drug molecules in the designing the dosage forms.
- \bullet $\;$ Know the principles of chemical kinetics & to use them in assigning expiry date for formulation.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	MICROMERITICS AND POWDER RHEOLOGY Particle size and distribution, average particle size, number and weight distribution, particle number, methods for determining particle volume, optical microscopy, sieving, sedimentation, measurement of particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness and flow properties.	08	15						
2.	SURFACE AND INTERFACIAL PHENOMENON Liquid interface, surface and interfacial tension, surface free energy, measurement of surface and interfacial tensions, free energy, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB classification, solubilization, detergency, adsorption at solid interface, solid gas and solid-liquid interface, complex films, electrical properties of interface.	07	20						
3.	VISCOSITY AND RHEOLOGY Newtonian system, Law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity: capillary, falling ball, rotational viscometers.	07	15						

	Section II					
Module	Content	Hours	Weightage			
No.			in %			
4.	DISPERSION SYSTEMS Colloidal dispersions: Definition, types, properties of colloids, protective colloids, applications of colloids in pharmacy. Suspensions and Emulsions: Interfacial properties of suspended particles, settling in suspensions, theory of sedimentation, effect of Brownian movement, sedimentation of flocculated particles, sedimentation parameters, wetting of particles, controlled flocculation, flocculation in structured vehicle, rheological considerations, emulsions; types, theories, physical stability.	09	20			
5.	DIFFUSION & DISSOLUTION Definitions, Steady state diffusion, Procedures and apparatus, Dissolution, Drug release. Complexation and protein binding Metal complexes, organic molecular complexes, inclusion compounds, methods of analysis, protein binding, complexation and drug action, crystalline structures of complexes and thermodynamic treatment of stability constants.	07	10			
6.	KINETICS AND DRUG STABILITY General considerations and concepts, half-life determination, Influence of temperature, light, catalytic species, solvent and other factors, Accelerated stability study, expiration dating.	07	20			

Text Book(s):

Title	Author/s	Publication
Martin's Physical Pharmacy and	Sinko, Patrick J.	Lippincott Williams & Wilkins
Pharmaceutical Sciences		Publishing , 2006
Cooper and Gunn's Tutorial Pharmacy	Carter, S.J.	6th Edition. CBS Publishers, 1986.

Reference Book(s):

Title	Author/s	Publication
	Monihan,	
The Physicochemical Basis of	Humphery and	
Pharmaceuticals	Abina Gean	Oxford University Press, 2009

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE2020	PHYSICAL PHARMACEUTICALS
CO 1	Review various physicochemical properties of drug molecules in the designing the dosage form.
CO 2	Know the principles of chemical kinetics & to use them in assigning expiry date for formulation.
CO 3	Acquire working knowledge and understanding the concepts of colloids and its applications.
CO 4	Learn the steps involved in the preparation of pharmaceutical buffers and its importance.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Micromeritics and powder rheology	1,2,3
2	Surface and interfacial phenomenon	1,2
3	Viscosity and rheology	1,2,4,5
4	Dispersion system	1,2,5
5	Diffusion and dissolution	1,2,4
6	Kinetics and drug stability	1,2,5

Department of Pharmaceutical Engineering

Course Code: SEPE2910

Course Name: Industry aligned learning -I

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
01	00	00	01	100	0	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To give idea to the students related to good manufacturing practices for manufacturing documentations, laboratory practices and engineering practices

Course Content:

Section I					
Module	Content	Hours	Weightage		
No.			in %		
1.	Engineer's Role in Pharmaceutical Industry	05	50		
	Section II				
Module	Content	Hours	Weightage		
No.			in %		
2.	Good Practices for Pharmaceutical Industry like GXP: GMP/	10	50		
	GDP / GLP / GEP				

Reference Book(s):

Title	Author/s	Publication	
ICH Guideline Q10	Global Society	Indian Press	

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE2910	INDUSTRY ALIGNED LEARNING-I
CO 1	Generate competency in accordance with current regulatory guidelines related to
	GMP.
CO 2	Relate the basic concepts and fundamentals of pharmaceutical industry.
CO 3	Implement various aspects of GDP.
CO 4	Illustrate the concepts of GLP and GDP.

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

.

Module No	Content	RBT Level
1	Engineer's Role in Pharmaceutical Industry	1,2,3
2	Good Practices for Pharmaceutical Industry	1,2,3

Department of Chemical Engineering

Course Code: SECH2010

Course Name: Chemical Process Calculations

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Scheme (Hours/Week) Examination Scheme (Marks)											
Theory	Practical Tutorial (Practical Tut	ractical Tutorial		Practical Tutorial		The	eory	Prac	ctical	Tut	orial	Total
Theory	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total				
03	00	01	04	40	60	00	00	50	00	150				

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- know the conventions and the methods of chemical process.
- Develop the basic acumen for the Chemical Engineering and its calculations.
- know how to carry out various process calculations.
- improve their aalytical skills for various chemical processes.
- improve their technical ability in the form of numerical analysis of chemical problems.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction: Chemical Engineering and Chemical Industry, Steady state and unsteady state processes, Unit Operations, Unit Processes and Process Flow Diagrams.	02	03				
2.	Graphics and Basics of Chemical Processes: Graphical methods of curve fittings, Method of least squares, Solution of cubic equations by trial and error method, Conversion of units, Dimensional analysis, Properties of gas, liquid and solid, Equations of state.	03	07				
3.	Basic Calculations: State properties: Molecular weight, Compositions, Density, Vapor pressure etc for gas, liquid and solid systems, Thermal properties: Heat capacity, Sensible heat, Latent heat, Heat of reaction, Heat of solution, Enthalpy calculations etc. for gas, liquid and solid systems, Techniques of problem Solution: Analytical, Graphical and Numerical, Gas laws and phase equilibria, Humidity, Saturation and Crystallization.	09	20				

	Material Balances:		
4.	Materials balance: Concepts of limiting and excess reactants, Batch, Stage-wise, Continuous and recycle operations, Material balance of systems involving mixing, extraction, distillation, crystallization, chemical reaction and recycle processes, Material balance equations based on conservation principle, Material balances for non-reactive processes (Unit Operations), Material balances for reactive processes.	08	20
	Section II		
Module No	Content	Hours	Weightage in %
5.	Vapour pressure: Vapour pressure plots, Vapour pressure of immiscible liquids and vapour pressure of solutions; Humidity and saturation humidity chart, Super saturation, Distribution of a solute between immiscible and partially miscible liquids, Solubility of gases.	04	05
6.	Thermo physics and Energy Balances: Energy balances for closed and open systems based on energy conservation principle, Energy balances for non-reactive processes (Unit Operations), Energy balances for reactive processes, Coupled material and energy balances for single unit process, Heats of formation, combustion, reaction, solution, dilution, Effect of temperature on heat of reaction, Energy balance of systems without and with chemical reactions, Heat capacity calculations, Enthalpy changes of reactions, dissolution and laws of thermochemistry, Effect of pressure and temperature on heat of reactions.	12	25
7.	Multiple Unit Processes: Introduction to processes with multiple Units; Material balances on processes with recycle, Purge, and bypass, Introduction to DOF analysis and solution strategy for multiunit process, Degrees of freedom in steady-state processes, Simultaneous material and energy balance problems using flow sheeting codes, Unsteady state material and energy balances.	07	20

Text Book(s):

Title	Author/s	Publication
Stoichiometry	Bhatt, B.I. and Vora, S.M.	Tata McGraw-Hill Publishing Co., New Delhi.
Chemical Process	Hougen, O.A., Watson.	John Wiley & Sons, (CBS Publishers &
Principles Part-I	K.M. and Ragatz, R.A.	Distributor, New Delhi).

Reference Book(s):

Title	Author/s	Publication		
Basic Principles and Calculation	Himmelblau, D.M.	Prentice Hall, Inc.		
in Chemical Engineering	niiiiiieibiau, D.M.			
Introduction to Chemical	S K Ghoshal, S K	Tata McGraw-Hill Publishing Co.		
Engineering	Sanyal and S Dutta	Ltd., New Delhi.		
Consequentian of Mass and Energy	Whitwell J.C. &Jone	MaCrow Hill Cingapore 1072		
Conservation of Mass and Energy	R.K.	McGraw-Hill, Singapore, 1973		

Web Material Link(s):

http://nptel.ac.in/courses/103103039/23

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- Numerical Test consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2010	CHEMICAL PROCESS CALCULATIONS
CO 1	Apply the concept of dimension and unit conversion to check dimensional
	consistency of balanced equations and understand the specific terms used in
	process calculation.
CO 2	Compute material balance problems on distillation, absorption, etc without
	chemical reactions.
CO 3	Compute material balance problems on batch and continuous process with
	chemical reactions.
CO 4	Solve energy balance problems on heat exchanger, evaporator, etc of various
	unit processes.
CO 5	Solve problems related to ideal and real gas and liquid solutions.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2,5
2	Graphics and Basics of Chemical Processes	1,2,3,4,5
3	Basic Calculations	3,4,5
4	Material Balances	3,4,5
5	Vapour pressure	1,2,3,4,5
6	Thermo physics and Energy Balances	3,4,5
7	Multiple Unit Processes	3,4,5

Department of Chemical Engineering

Course Code: SECH2020

Course Name: Mechanical Operations

Teaching & Examination Scheme:

Teacl	hing Scheme	e (Hours/W	'eek)	Examination Scheme (Marks)			Examination Scheme (Ma		rks)	
Theory	y Practical Tutorial		Practical Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- understand many basic principles of Chemical Engineering operations such as Size Reduction, Filtration, Sedimentation, Mixing and Agitation etc. and their mathematical co-relation.
- understand basic principles of particle preparation and their characterization.
- study various methods for storage of solids and conveyors available for their transportation.
- understand the performance of different equipment for separation of solids and size reduction

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Properties of particulate solid Introduction to particle technology, Characterization of solid particles, particle size measurement techniques, Mixed particles, specific surface of mixture, Particle population.	02	05
2.	Size reduction and enlargement Types of equipment and their studies, Principles of comminution, Laws of crushing and grinding, Closed and open circuit grinding, power requirements, Energy and power required for comminution, Industrial processes for particle size enlargement, size enlargement equipment comminution, Broad classification, Primary breaking operations, Intermediate crushing by crushers, cone, roll and impact crushers, Ball and fumbling mills—fine grinding, Determination of power consumption.	10	20
3.	Properties of masses of solids Storage of solids: Angle of repose, bulk storage, storage in bins and silos.	02	08

	Conversing of colide		
	Conveying of solids Codes for characterization of solids, screw conveyers, belt		
4.	conveyers, bucket elevators, pneumatic conveying of solids, Design of conveyor belts, Mechanical and pneumatic conveying equipment and power consumption.	03	07
	Screening - equipment and efficiency		
5.	Screen analysis, Method of reporting screen analysis, Capacity and effectiveness of screens, Screen analysis, sizing curves, industrial sizing, screening revolving and vibrating screens, Screen efficiency and capacity, Classification: Laws, wet and dry methods, Types of classifiers—stationary, mechanical, centrifugal and hydraulic.	05	10
	Section II		
Module			Weightage
No.	Content	Hours	in %
	Filtration		
6.	Flow through porous media, Theories of filtration - Principles of filtration, constant rate and constant pressure filtration, Optimum cycle, compressible cakes and filter aids, constant pressure, constant rate filtration, compressible and incompressible cakes, cake resistance, filter media resistance, filter media, filter aids, filtration equipment (batch, continuous), selection criteria, washing of filter cakes, filtration by continuous vacuum and pressure filters.	06	15
7.	Gravity setting and sedimentation Gravity clarifiers, sorting clarifiers, Batch sedimentation, rate of sedimentation, Thickening process and sedimentation, Design of thickeners and clarifiers free and hindered setting, Centrifugal sedimentation: Principles of centrifugal sedimentation, Solid gas separation, liquid solid separation, Centrifugation.	05	10
8.	Mixing Mixing equipment and characteristics, power consumption and efficiency, mixing of powders and pastes: Mixers for cohesive and non-cohesive solids, Mixing Index Agitation and mixing of liquids: Basic stirred tank design, Types of impellers, flow patterns, power consumption and scale up.	06	10
9.	Separators Cyclones and electrostatic precipitator, Flotation, Thickeners, Flotation, Physico-chemical principles, Chemistry of flotation reagents and their functions, Flotation processes, Froth flotation machines, Concentration of copper, lead and zinc ores by flotation, Flotation of non-sulphide ores of copper and lead, dolomite, fluorspar, gypsum, phosphates, manganese, silica, sillimanite, graphite and coal, Electrical and magnetic	06	15

concentration, Electrostatic and magnetic separations, dry and	
wet type separators.	

List of Experiment:

Sr No	Experiment List	Hours
1.	Determination of particle size by sieve analysis.	02
2.	Determination of the optimum speed and critical speed of a ball mill.	02
3.	Measurement of different bulk properties of powder samples.	02
4.	To study powder compaction behavior using different powder compaction models.	02
5.	Study of particle size reduction by Roll crusher and Jaw crusher	04
6.	Characterization of powder flow ability by Angle of Repose.	
7.	Obtaining the collection efficiency of cyclone	
8.	Obtaining settling rates of slurry as function of solid concentration	
9.	Power consumption in Agitated vessels	02
10.	Study of froth flotation process	02
11.	Study of Plate and Frame filter place	04
12.	Study of Centrifugation process	02

Text Book(s):

(-)		
Title	Author/s	Publication
Unit Operations of Chemical	W L McCabe	McGraw-Hill International
Engineering	and J C Smith	
Principles of Mineral Dressing	A M Gaudin	Tata McGraw-Hill Publishing
Elements of Ore Dressing	A F Taggart	John Wiley and Sons, New

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering Vol II, 6th Ed.	J.M. Coulson & J.F.	Elsevier, 2003 or
Chemical Engineering vol II, our Eu.	Richardson	Pergamon Press
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and Separation	C.G. Geankopolis	Prentice Hall India, 2003
Process Principles' 4th Ed,	C.G. Geankopons	Frendice Hall Illula, 2005

Web Material Link(s):

http://nptel.ac.in/syllabus/103107091

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

• After completion of the course, the students will be able to:

SECH2020	MECHANICAL OPERATIONS			
CO 1	Apply and distinguish fluid particle systems and equipment.			
CO 2	Select suitable size reduction equipment for solid solid separation method and			
	conveying system.			
CO 3	Describe and analyze agitation and mixing and their equipment.			
CO 4	Classify solid liquid gas separation equipment. liquid gas separation			
	equipment.			

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

.

Module No	Content	RBT Level
1	Properties of particulate solid	1
2	Size reduction and enlargement	1,2,3,4
3	Properties of masses of solids	1,2,4
4	Conveying of solids	1,3,4
5	Screening - equipment and efficiency	2,4,5
6	Filtration	2,4,5
7	Gravity setting and sedimentation	2,4,5
8	Mixing	2,4,5
9	Separators	2,4,5

Department of Chemical Engineering

Course Code: SECH2040

Course Name: Chemical Engineering Materials & Metallurgy

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exai	ninatio	on Sche	me (M	arks)		
Theory Practical Tutoria		heory Practical Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- identify the different chemicals and related materials and their properties.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- help the students to understand the process involved in chemical and mechanical testing of materials under certain conditions.
- make them aware about the advancements in the area of materials used in chemical and allied industries.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Introduction to Engineering Materials Classification of engineering materials, Engineering requirements from materials, Basics of crystals and their correlated properties, Factors that govern material selection for engineering applications, Micro and macro examination.	02	10		
2.	Structure and Imperfections in Crystals Introduction, Unit cells and their lattice structure, coordination number, crystal structure of metals, Atomic packing factor, Crystallographic planes and directions, Polymorphism and Allotropy, Diffusion in solids, Imperfection in crystals and their types.	04	10		
3.	Ferrous metals and its Alloys Iron and their alloys - Aluminium, copper, Zinc, lead, Nickel and their alloys with reference to the application in chemical industries. Phase Diagrams and Phase	06	15		

	Transformation, TTT and CCT Diagrams. Iron-IronCarbide and Iron-carbon diagrams, Overview of different types of irons - Wrought iron Pig iron, Cast iron, White Cast Iron, Grey Cast Iron, Malleable Cast Iron and their properties and characteristics, deformation of metals, Types of steel like Chromium, Manganese, Molybdenum and Manganese steels.		
4.	Metals: their behaviors and properties Solidification of metals and an alloy, Nucleation and Growth, Solidification defects, Effects of Structure on Mechanical Properties, Methods to control the grain structure resulting from solidification, Cooling curve of pure metal and alloy, Deformation in polycrystalline materials, Mechanical testing of materials (destructive & non-destructive) testing methods.	03	15
	Section II		
Module No.	Content	Hours	Weightage in %
5.	Polymers, Ceramics, and Composites: Methods of fabrication of materials like timber, plastics, rubber, fibres and other polymeric materials, Ceramics, Ceramic Matrix, Crystalline and non-crystalline ceramic systems, Properties of ceramic materials, Glass and refractories, Cement refractories, Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride, Processing Composite materials, Fibre reinforced plastic (FRP), Organic materials like wood, plastics, and rubber, Advanced materials like Biomaterials and composites with special reference to the applications in chemical Industries, Polymers - Definition, Classification & characteristics, Types of polymerization, Polymer processing, Smart polymer, Advanced polymer Conductive polymer, bio-route prepared nano polymer, Blended polymer, self-cleaning polymer surfaces.	10	30
6.	Nano materials Metal and Semiconductor Nano materials, Quantum Dots, Wells and Wires, Molecule to bulk transitions, Bucky balls and Carbon Nano tubes, Nano composite, Molecular machines, Nanofactories, Nanocatalysts, Nanocomposites, Bio-analytical tools, Nano/micro arrays, Nano devices, lab- on-a-chip etc.	05	20

Text Book(s):

Title	Author/s	Publication	
Materials Science and Metallurgy	O. P. Khanna	Dhanpatrai Publication	
Chemical Engineering Materials	Rumford F.	Constable and Company	
	Kumioru r.	Limited, 2nd Edition, 1987	
Membrane Separation Processes	Kaushik Nath	PHI Pvt. Ltd., 2008	
Principles of Colloid and Surface	Hiemenz, P. C., and	Marcel Dekker, NY, 1997.	
Chemistry, 3rd Edn.	R. Rajgopalan	Marcel Derkel, N1, 1997.	
Nano chemistry A chemical	Ozin G. A, Andre C.	Royal society of chemistry,	
approach to nanomaterials	Arsenault	UK,2005.	

Reference Book(s):

Title	Author/s	Publication	
Callister's Material Science and	R.	Wiley India	
Engineering	Balasubramanian	Whey mula	
Chemical Engineering Materials	Chaudhry H.	Indian Book Distributing	
	Chaudhi y fi.	Company, 2nd Edition, Delhi,	

Web Material Link(s):

• http://nptel.ac.in/downloads/113106032/

Course Evaluation: Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

• After completion of the course, the students will be able to:

SECH2040	CHEMICAL ENGINEERING MATERIALS & METALLEURGY					
CO 1	Identify crystal structure of various materials.					
CO 2	Analyze microstructures, crystallography and defects of different chemical					
	engineering materials and metals					
CO 3	Classify the metallurgy of ferrous and nonferrous metals and alloys.					
CO 4	Define the basics of polymers and composite material.					

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Engineering Materials	1,2
2	Structure and Imperfections in Crystals	2,3
3	Ferrous metals and its Alloys	1,4
4	Metals: their behaviors and properties	2,3,4
5	Polymers, Ceramics, and Composites	1,2,3
6	Nano materials	3,5,6

Department of Pharmaceutical Engineering

Course Code: SEPE2930

Course Name: Industrial Exposure

Prerequisite Course(s): --

Teaching & Examination Scheme:

Ī	Teaching Scheme (Hours/Week)				Exa	aminatio	on Schen	ne (Mar	ks)		
	Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
	Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
ĺ	00	00	00	02	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- get exposed to the industrial spectrum.
- learn the mechanisms of industry/ workplace.
- be aware about work culture and policies of industries.

Outline of the Course:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Grand Total:	100

Course Outcome(s):

• After completion of the course, the students will be able to:

SEPE2930	INDUSTRIAL EXPOSURE
CO 1	Construct company profile by compiling brief history, management structure,
	products/services offered, key achievements and market performance for the
	company visited during internship.
CO 2	Determine the challenges and future potential for his/her internship organization
	in particular and the sector in general.
CO 3	Test the theoretical learning in practical situations by accomplishing the tasks
	assigned during the internship period.
CO 4	Apply various soft skills such as time management, positive attitude and
	communication skills during performance of the tasks assigned in internship
	organization.
CO 5	Analyze the functioning of internship organization and recommend changes for
	improvement in processes.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Selection of Companies	1,2,3,4
2	Company Information collection	1,2,3,4
3	Report Writing	1,2,3,4
4	Presentation & Question-Answer	1,2,3,4

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted:
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph

Department of Pharmaceutical Engineering

Course Code: SEPE2040

Course Name: General Pharmacology I

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Veek) Examination Scheme (Marks)							
Theory	Dragtical	Tutorial	Cnadit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know in detail the classification, therapeutic use
- To know cardiovascular system,
- To know urinary system and respiratory system

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction to pharmacology Sources of drugs, dosage forms and routes of drug administration, mechanism of action of drugs. Combined effect of drugs, factors modifying drug action, tolerance and dependence. Absorption, Distribution, Metabolism and Excretion of drugs. Principles of basic and clinical pharmacokinetics. Adverse drug reactions. Drug interactions, Bioassay of drugs and biological standardisation, Overview of drug discovery and development.	08	20			
2.	Pharmacology of peripheral nervous system Autonomic and somatic nerve transmissin, parasympathomimetics and parasympatholytics. Sympathomimetics, sympatholytics, adrenergic receptor and neuron blocking agents, ganglionic agonists and antagonists agents, neuromuscular blocking agents, local anaesthetic agents.	06	15			
3.	Pharmacology of central nervous system Nerve conduction and transmission in the C.N.S, general anaesthetics, sedatives, hypnotics, anti-anxiety agents and centrally acting muscle relaxants, Psychopharmacological agents – Antipsychotics, antidepressants, neuroleptics, anti-maniacs and hallucinogens, thymoleptics, antiepileptic drugs, Antiparkinsonism drugs, analgesics, antipyretics, anti-inflammatory (NSIADs) and anti-gout drugs, narcotic analgesics and antagonists, C.N.S. stimulants, drug addiction and drug abuse.	08	15			

	Section II					
Module No.	Content	Hours	Weightage in %			
4.	Pharmacology of cardiovascular system Cardiac glycosides, anti-hypertensive drugs, anti-anginal and vasodilator drugs including calcium channel blockers and beta adrenergic antagonists, Anti-arrhythmic drugs, antihyperlipidemic drugs, Drugs used in the therapy of shock	12	25			
5.	Pharmacology of urinary system and respiratory system Fluid and electrolyte balance, Diuretics and Anti-diuretics, Anti- asthmatic drugs including bronchodilators, leukotriene inhibitors, anti-tussives and expectorants, Respiratory stimulants.	11	25			

Text Book(s):

Title	Author/s	Publication
Basic & Clinical Pharmacology,	Katzung, B.G.	P rentice Hall, International,11th
		edition, McGraw-hill, 2009.
Essentials of Medical Pharmacology	Tripathi, K.D	Jay Pee Publishers, New Delhi,7th

Reference Book(s):

Title	Author/s	Publication
"Biotherapeutic Agents and Infectious		
Diseases",	Elmer, G.W.	Humana Press, 1999.
		5th Edition, Churchill Liningstone /
Pharmacology	Rang, H.P.	Elsevier, 2003.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

• After completion of the course, the students will be able to:

SEPE2040	GENERAL PHARMACOLOGY-I			
CO 1	Discuss, what drugs do to the living organisms and how their effects can be applied to			
	therapeutics.			
CO 2	Knowledge of drugs like sources, physico chemical properties, mechanism of action,			
	physiological and biochemical effects.			
CO 3	Establish the knowledge of absorption, distribution, metabolism and excretion along with			
	the adverse effects, clinical uses, interactions, doses, contraindications and routes of			
	administration of different classes of drugs.			
CO 4	Explain the pharmacology of drugs acting on Central Nervous System.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to pharmacology	1,2
2	Pharmacology of peripheral nervous system	1,2,4
3	Pharmacology of central nervous system	2,4
4	Pharmacology of cardiovascular system	2,4
5	Pharmacology of urinary system and respiratory	1,2,4
	system	

Department of Pharmaceutical Engineering

Course Code: SEPE2050

Course Name: Molecular Biology and Genetic Engineering

Prerequisite Course/s: --

Teaching & Examination Scheme:

Tea	ching Scheme	e (Hours/Wee	ek)		Ex	aminatio	n Schem	e (Mark	s)	
Theory	Dractical	Tutorial	Credit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	02	00	05	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To provide the molecular processes of DNA replication
- To provide the basic concepts of protein and nucleic acid structure

Section I					
Module No.	Content	Hours	Weightage in %		
1.	Cell structure and function of the organelles Prokaryotic, Eukaryotic cells, Sub-cellular organelles and functions. Principles of membrane organization membrane proteins, cytoskeletal proteins. Extra cellular matrix, cell-cell junctions, various types of transport across cell membrane.	08	10		
2.	Cell division, cancer and immortalization Cell cycle – Mitosis, Meiosis, Molecules controlling cell cycle, cancer, role of Ras and Raf in oncogenesis and apoptosis. Stem cells, immortalization of cells and its applications	07	15		
3.	Chemistry of nucleic acids Introduction to nucleic acids: Nucleic acids as genetic material, Structure and physicochemical properties of elements in DNA and RNA, Biological significance of differences in DNA and RNA. Primary structure of DNA: Chemical and structural qualities of 3',5'-Phosphodiester bond. Secondary Structure of DNA: Watson & Crick model, Chargaff's rule, X-ray diffraction analysis of DNA, Forces stabilizes DNA structure, Conformational variants of double helical DNA, Hogsteen base pairing, Triple helix, Quadruple helix, Reversible denaturation and hyperchromic effect. Tertiary structure of DNA: DNA supercoiling.	15	25		
	Section II				
Module No.	Content	Hours	Weightage in %		

4.	DNA replication	10	10
	Overview of Central dogma. Organization of prokaryotic and		
	eukaryotic chromosomes. DNA replication: Meselson & Stahl		
	experiment, bi-directional DNA replication, Okazaki fragments,		
	Proteomics of DNA replication, Fidelity of DNA replication,		
	Inhibitors of DNA replication, Overview of differences in		
	prokaryotic and eukaryotic DNA replication, Telomere replication		
	in eukaryotes.		
	Transcription		
	Structure and function of mRNA, rRNA and tRNA. Characteristics		
	of promoter and enhancer sequences. RNA synthesis: Initiation,		
	elongation and termination of RNA synthesis, Proteomics of RNA		
5.	synthesis, Fidelity of RNA synthesis, Inhibitors of transcription,	10	20
	Differences in prokaryotic and eukaryotic transcription. Basic		
	concepts in RNA world: Ribozymes, RNA processing: 5'- Capping,		
	Splicing-Alternative splicing, Poly 'A' tail addition and base		
	modification.		
	Translation		
	Introduction to Genetic code: Elucidation of genetic code, Codon		
	degeneracy, Wobble hypothesis and its importance, Prokaryotic		
6.	and eukaryotic ribosomes. Steps in translation: Initiation,	10	20
	Elongation and termination of protein synthesis. Inhibitors of		
	protein synthesis. Post-translational modifications and its		
	importance.		

List of Experiments

S.no	Experiment list	Hours
1	Isolation of total and plasmid DNA from bacteria.	04
2	Isolation of total DNA from plant and animal cells/tissues. 04	
3	Restriction enzyme digestion of DNA.	03
4	Agarose gel electrophoresis of nucleic acids.	02
5	Elution of DNA from Agarose gels.	03
6	Polymerase Chain Reaction [PCR].	02
7	Induction of recombinant protein expression	02
8	Western blotting.	03

Text Book(s):

	Text book(3).			
Title		Author/s	Publication	
	"Molecular Biology"	Friefelder, David,	2nd Edition, Narosa Publishing	
			House,1999.	
	"Molecular Biology".	Weaver, R.F.	3rd Edition, McGraw Hill, 2005.	

Reference Book(s):

Title	Author/s	Publication
		5th Edition, Pearson Education,
"Molecular Biology of the Gene	Waston, J.D.	2004.
	Walker, J.M. and R.	4th Edition Danima 2002
"Molecular Biology and Biotechnology	Rapley	4th Edition, Panima, 2002.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

• After completion of the course, the students will be able to:

SEPE2050	MOLECULAR BIOLOGY & GENETIC ENGINEERING			
CO 1	Identify the various levels of gene regulation and protein function including signal			
	transduction and cell cycle control.			
CO 2	Interpret the outcome of experiments that involve the use of recombinant DNA			
	technology and other common gene analysis techniques.			
CO 3	Relate properties of cancerous cells to mutational changes in gene function.			
CO 4	Execute various experiments commonly involved in molecular biology research.			
CO 5	Impart detailed understanding of transcription and translation.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Cell structure and function of the organelles	1,2
2	Cell division, cancer and immortalization	2,4
3	Chemistry of nucleic acids	2,4,5
4	DNA replication	2,3,4,5
5	Transcription	1,2
6	Translation	2,4

Department of Pharmaceutical Engineering

Course Code: SEPE2920

Course Name: Industry aligned learning -II

Teaching & Examination Scheme:

Tea	ching Scheme	neme (Hours/Week) Examination Scheme (Marks)			Examination Scheme (Marks)					
Theory	Dragtigal	Tutorial Cradit		The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	00	00	02	100	00	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To deliver knowledge regarding effluents generated during manufacturing and idea of equipment's used for the treatment of effluent
- Management of water to control waste of water and control aqueous effluent
- To deliver knowledge regarding different vacuum system and energy conservation

Course Content:

	Section I						
Module	Content	Hours	Weightage in %				
No.							
1.	Water Management with respect to Zero Discharge in	05	10				
1.	Pharmaceutical Industry	03	10				
2.	Energy Conservation measures required for Pharmaceutical	10	15				
۷.	Industry	10					
	Section II						
Module	Content	Hours	Weightage in %				
No.							
3.	Introduction to Effluent Treatment Plant, Scrubber system,	10	1 5				
3.	Multi Effect Evaporation system etc.	10	15				
4.	Different kinds of Vacuum system	05	10				

Text Book(s):

Title	Author/s	Publication
Waste water treatment	M N Rao	Mc Grill

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

• After completion of the course, the students will be able to:

SEPE2920	INDUSTRY ALIGNED LEARNING-II
CO 1	Acquire knowledge regarding effluent treatment and controlling quantity of water
	through proper management system.
CO 2	Ability to identify different kinds of vacuum system.
CO 3	Knowledge to established energy conservation in pharmaceutical industry.
CO 4	Identify various scribing systems, multi effect evaporators and drying system.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Water management	1,2,4
2	Effluent Treatment Plant	1,2,3,4
3	Energy Conservation	1,2,3
4	Vacuum system	1,2,4

Department of Chemical Engineering

Course Code: SECH2050

Course Name: Fluid Flow Operations

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teachir	ng Scheme (H	Hours/Week) Examination Scheme (Marks)								
Theory	Practical	Tutorial	Credit	The	ory	Pract	ical	Tuto	rial	Total
lineory	Tractical	ratoriai	dicuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- get the introductory idea and explanation of basic fundamentals of Fluid Flow Operations which is used in the applications of chemical engineering, Porous media movement, Aerodynamics, hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Basic Concept and Fluid statics & its application Scope and Applications of fluid flow, Properties of fluidssuch as Density, viscosity, surface tension, capillarityeffect, vapour pressure. Nature of fluids: Incompressible and compressible fluids, Pressure concepts, Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic equilibrium in gravitational and centrifugal field, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of Buoyancy and Metacenters, Determination of Metacentric Height, Stability of Floating and Submerged Body, Position of metacenter relative to Centre of buoyancy. Manometers, Inclined manometer, Continuous gravity ad centrifugal decanter.	08	15

	D 1 1 0'4 11 11		
2.	Boundary layers & its applications Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift, Separation of Boundary layer, Streamlined and Bluffed Bodies	04	10
	Kinematics of fluid flow		
3.	Types of fluid flow namely steady and unsteady, Uniform and non- uniform, laminar and turbulent, compressible and incompressible internal and external, one, two-dimensional flow. Newton's Law of Viscosity, Rheological behavior of fluid, capillary viscometer.	04	10
4.	Basic fluid equations & fluid dynamics Bernoulli's equation Euler's Equation, Modified Bernoulli's equation. Major and Minor losses, Equivalent length, flow through pipe in series, parallel, pipe network Application Venturimeter: Horizontal and inclined, Orifice meter, Pitot tube Notches and Weirs: Introduction, classification, Derivation for V – notch, Rectangular notch	06	15
	Section II	L	
Module	Content	Hours	Weightage
No.		Hours	in %
5.	Flow of compressible fluids and its applications Introduction to compressible flow, flow through pipes, Pipe fitting. Valves, nozzles, Fans, Blowers ejectors and compressors; Continuity equations, Velocity of sound, Stagnation temperature, Processes of compressible flow.	07	15
6.	Flow of Fluids through Solids Form drag - skin drag - Drag coefficient. Flow around solids and packed beds. Friction factor for packed beds. Ergun's Equation - Motion of particles through fluids - Motion under gravitational and centrifugal fields - Terminal settling velocity. Fluidization - Mechanism, types, general properties - applications	08	15
7.	Transportation Classification and types, Centrifugal pumps – Construction and working, Power required, Definitions of heads and efficiency, NPSH, Priming, Cavitations, characteristic curves. Specific speed, minimum speed.	08	20

Reciprocating Pump: Classifications and working. Power	
Consumption in Agitation: Power curves, PowerNo., types of	
impellers. Introduction to Compressors, Fans and Blowers.	
Types of Valves: Globe valves, Gate valves, butterfly valves	
and non – Return valves.	

List of Experiment:

Sr No	Experiment List	Hours		
1.	Determine metacentric height of floating body.	02		
2.	Measurement of pressure using different types of manometers.	04		
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and Rotameter.			
4.	Verification of Bernoulli's apparatus.	02		
5.	Measurement of velocity of flow using Pitot tube.	02		
6.	Measurement of Friction factor for Different pipes & annulus.	02		
7.	Measurement of viscosity using Redwood Viscometer.	02		
8.	Determine discharge through triangular/trapezoidal / rectangular notch.	02		
9.	Determine different flow patterns by Reynolds's apparatus.	02		
10.	Measurement of lift and drag of aerofoil.	02		
11.	Measurement of static pressure distribution around aerofoil using wind tunnel.	02		
12.	Experiment on viscosity by stoke's law	02		
13.	Experiments on characteristics of centrifugal pumps	02		

Text Book(s):

Title	Author/s	Publication
Textbook of Fluid Mechanics and Hydraulic Machines	R. K. Bansal	Laxmi Publications
Introduction to Fluid Mechanics and Fluid Machines	S.K. Som & G Biswas.	Tata McGraw Hill Publication
Unit Operations of Chemical Engineering	McCabe W.L., Smith J.C., Harriott P.	McGraw Hill

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill
		Publication
Fluid Mechanics	R.K. Rajput	Schand Publication
Fluid Mechanics for Chemical Engineers	De Nevers N	McGraw-Hill

Web Material Link(s):

• http://nptel.ac.in/courses/112105171/1

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2050	FLUID FLOW OPERATIONS
CO 1	Understand fundamentals of fluids and its types.
CO 2	Analyze various flow problems and flow characteristics for various flow conditions
CO 3	Demonstrate working of different flowmeters.
CO 4	Determine major and minor losses through different pipes fittings.
CO 5	Evaluation of pump performance

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basic Concept and Fluid statics & its application	1,2
2	Boundary layers & its applications	2,4
3	Kinematics of fluid flow	2,3,4
4	Basic fluid equations & fluid dynamics	1,2
5	Flow of compressible fluids and its applications	1,2,4,5
6	Flow of Fluids through Solids	2,3,4
7	Transportation	3,4,5

Department of Chemical Engineering

Course Code: SECH2061

Course Name: Physical Inorganic and Analytical Chemistry

Prerequisite Course(s): SESH1220 - Chemistry

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Sche	me (Ma	rks)		
Theory	eory Practical Tutorial Cre		Credit	The	eory	Prac	ctical	Tut	orial	Total
THEOTY	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- provide the basic knowledge of physical, inorganic and analytical chemistry to students in the context of industrial need to make a good foundation in Chemistry which will help to the students in their self-development and to cope up with industries need.
- understand the basics of different chemistry
- make them aware about various analytical techniques used for the analysis of chemical substances
- use physical chemistry and its theoretical principles and experimental techniques to investigate the chemical transformations and Physical changes accompanying them.
- make them aware about the inorganic chemistry and its qualitative analysis.

	Section I		
Module No.	Content	Hours	Weightage in %
	Properties of Liquid and preparation of solution		
1.	Define the terms: Solute, Solvent and Solution, Different standards of solutions like Primary standards and Secondary standards, Definition and different methods of expressing concentration, Definition of the Surface tension, Parachor, Refractive index, Molar refraction, Specific refraction, Viscosity. Electro analytical techniques for analysis		04
2.	Basic concepts, Standard reduction potentials, Measurement of overall redox reaction tendency, Introduction to Potentiometry, Electrodes (Reference electrode, Saturated calomel reference electrode, indicator electrode, pH electrode), potentiometric titration, Karl Fischer titration (End point detection, The coulometric method)	06	14

Г		1	
3.	Phase Rule Introduction, Phase Rule and its merits and demerits, Phase diagrams of single component systems (H ₂ O and Sulphur), two component systems involving eutectic systems (Pb-Ag, Sn-Mg), Applications.	03	07
	Nuclear Chemistry		
4.	Basic terms and concepts, Types of nuclear reactions, Nuclear fission and fusion, nuclear reactors, radiation measurements (Detectors- Gas ionization detectors- principle, Ion chambers- proportional counter, G.M. Counter-scintillation detector- principle, features, Inorganic & organic scintillators, solid state detectors), disposal of nuclear waste.	05	11
	Emerging Trends in Green Chemistry		
5.	Introduction to Green Chemistry, Twelve principles of Green Chemistry with examples, Designing a Green Synthesis, Example of green synthesis (adipic acid, catechol, Methyl Methacrylate).	02	04
	Microscopy Techniques		
6.	Principles, Instrumentation, Analysis of images/artifacts, Applications, AFM (Atomic force microscopy), SEM (Scanning electron microscope), TEM (Transmission electron microscopy), FTIR.	04	10
	Section II		
Module No.	Content	Hours	Weightage in %
7.	Introduction and theories of corrosion, Dry corrosion (chemical), Wet corrosion (electrochemical), Bio corrosion, Mechanism of corrosion, Factors influencing corrosion (ratio of anodic to cathodic areas, nature of metal, nature of corrosion product, nature of medium – pH, conductivity, and temperature), Corrosion control and prevention methods, corrosion inhibitors, cathodic and anodic protection and Electroplating. Protective coatings, chemical principles involved, boiler corrosion, inter granular corrosions.	07	17
8.	Instrumental Methods of Chemical Analysis: Spectroscopic methods Basic concepts, Instrumentation, Interpretation of data and relevant applications, Ultraviolet spectroscopy (UV), Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR), Mass Spectrometry.	06	13
9.	Thermal methods of analysis TGA, DTA, DSC (Principle, Instrumentation, Quantitative aspects of curves and/or Interpretation of curves,	05	10

	Separation Techniques		
	Principle, Instrumentation, selection of column and its		
	specifications, applications and Limitations, Planar		
10.	Chromatography (Paper chromatography, Thin Layer	05	10
	Chromatography), Gas Chromatography (GC), High		
	Performance Liquid Chromatography (HPLC)		

List of Experiment:

Sr. No.	Experiment List	Hours
1.	To determine the strength of the given Hydrochloric acid by Sodium	04
1.	hydroxide conduct metrically.	04
2.	To synthesize Chrome Alum.	04
3.	To determine λ max and concentration of unknown solution of KMnO4	04
٥.	in 2N H2SO4 using Colorimeter.	
4.	Determine the amount of Ba ² + as BaSO ₄ in a salt solution.	04
5.	To investigate the reaction between $K_2S_2O_8$ and KI.	04
6.	Conductometric titration of strong acid vs. strong base.	04
7.	Determination of dissociation constant of weak acid by pH metric	04
/.	method.	
8.	Determination of cloud point of a surfactant in the presence of salts.	02

Text Book(s):

Title	Author/s	Publication
Text Book of Engineering	Chawla S.	Dhanpat Rai & Co. Pvt. Ltd., Delhi,
Chemistry		2003.
Engineering Chemistry	Sharma B. K.	Krishna Prakashan Media (P) Ltd,
		Meerut.,2001
Instrumental Methods of	Ewing G. W.	Tata-McGraw Hill., New Delhi, 2001.
Chemical Analysis		
Basis Concept of Analytical	Khopkar S. M.	New Age International Publishers,
Chemistry		1998.
A Text Book of Quantitative	Vogel A. I.	ELBS UK, 5th Edition, 1996.
Chemical Analysis		
A Text Book of Polymer Science	Billmeyer F. W.	Wiley Interscience, New York, 3rd ed.,
		1984.

Reference Book(s):

Title	Author/s	Publication		
Analytical Chemistry for	John Konkol	CDC Drogg Taylor & Evangia Croup		
Technicians (4 th edition)	John Kenkel	CRC Press, Taylor & Francis Group		
Corrosion Engineering	Pierre R. Roberge	The McGraw-Hill Companies		
Principles and Practice	Fierre K. Koberge	The McGraw-fill Companies		
New-Trends-in-Green-	V. K. Ahluwalia,	Kluwer Academic Publishers,		
	·	Boston Dordrecht London &		
Chemistry	M.Kidwai	Anamaya Publishers, New Delhi		
Atomic Force Microscopy	Peter Eaton	Oxford University Press		

Fundamentals of Atomic Force	Ronald G.	World Scientific Publishing Co
Microscopy	Reifenberger	World Scientific I abilishing co
Principles and Practice of Modern Chromatographic Methods	Robards K., Jackson P., Haddad P A.	Elsevier Academic Press
Fundamentals of Analytical Chemistry	Douglas A. S., Donald M. W., Holler H. J., Crouch H. R.	Brooks Cole; 9thedition
Introduction to Spectroscopy	Donal L. P., Gary M. L., George S. K. , James A. V.	

Web Material Link(s):

http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2061	PHYSICAL INORGANIC & ANALYTIC CHEMISTRY			
CO 1	Describe the basics of different chemistries used in chemical industries.			
CO 2	Assess the theoretical and practical knowledge about modern analytical			
	techniques and its quantitative analysis.			
CO 3	Predict and apply the analytical tools used in research laboratories.			
CO 4	Evaluate fundamentals of electrochemistry and recognize the electrochemical			
	processes.			
CO 5	Identify and define various types of nuclear changes or processes including			
	fission, fusion and decay reactions.			

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	No	Content	RBT Level
1		Properties of Liquid and preparation of solution	1,2
2		Electro analytical techniques for analysis	1,3

3	Phase Rule	2,5
4	Nuclear Chemistry	1,2,3
5	Emerging Trends in Green Chemistry	1,2,5
6	Microscopy Techniques	2,5
7	Corrosion and its Control	2,3,4
8	Instrumental Methods Of Chemical Analysis:	4,5
	Spectroscopic methods	4,5
9	Thermal methods of analysis	2,4,5
10	Separation Techniques	2,4,5

Department of Chemical Engineering

Course Code: SECH2070

Course Name: Chemical Engineering Thermodynamics-I

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)				
Theory Practical	Practical Tutorial Credit		Practical Tutorial Cr		Dractical	The	eory	Prac	ctical	Tut	orial	Total
	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	00	02	05	40	60	00	00	50	00	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- understand and appreciate thermodynamics as applied to various Chemical Engineering Processes.
- avail practical experience on the principles, viz., thermodynamic laws, Solution thermodynamics, Phase equilibrium and reaction equilibrium.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction to the laws of Thermodynamics: Concept of Equilibrium, Entropy & Gibbs Free Energy, Laws of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG).	07	10			
2.	Properties of pure fluids: PVT behavior including EOS for mixtures; Fugacity estimation/ calculations based on PVT behavior, Heat effects accompanying chemical Reactions. Phase equilibrium criteria and VLE calculations for different pressure ranges including flash	07	15			
3.	Estimation of VLE data: Fugacity, Fugacity Coefficient, Activity, Activity Coefficient, Activity coefficient calculation from experimental VLE data and data reduction, applications of Gibbs-Duhem relation for calculations of and consistency check for VLE data.	05	10			
4.	Phase Diagrams in Thermodynamics: Phase diagrams for miscible, partially miscible and immiscible liquid mixtures, introduction to LLE and VLLE calculations.	03	15			
	Section II					

Module	Content	Hours	Weightage
No.			in %
5.	Thermodynamic Properties of Solutions: Introduction to fugacity and activity, Activity Coefficients-Partial molar properties- miscible system, immiscible system, Chemical potential as a partial molar property-Lewis randall rule-Roults and Henry's law-Gibbs Duhem Equation Mathematical relation among thermodynamic functions, Maxwell's relations, Interrelation between H, S, U, G, C _p , C _v , properties of single- and two-phase system. Types of thermodynamic diagrams. Partially immiscible system, testing of vapor-liquid equilibrium data, Van Laar equation. Margules equation, Redlich-Kister equation, P-X-Y, T-X-Y, & X-Y Diagram, vapor-liquid equilibrium of ideal and non-ideal solution	15	30
6.	Refrigeration and liquefaction: Carnot refrigerator, Vapour compression cycle, Absorption refrigeration, Choice of refrigerant, Heat pump, Liquefaction processes.	08	20

Text Book(s):

Title	Author/s	Publication
Introduction to Engineering	J.M. Smith, Hendrick Van	McGraw Hill, New York, 2005.
Thermodynamics	Ness, Michael M. Abbott,	
Chemical Engineering	S. Sundaram	Ahuja Publishers, New Delhi,
Thermodynamics		2001
A Textbook of Chemical	K.V. Narayanan	PHI Learning, 2004
Engineering Thermodynamics		

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering	B.F. Dodge	McGraw Hill, New York, 1971.
Thermodynamics	B.F. Douge	McGraw IIII, New Tork, 1971.
Chemical Engineering	Y.V.C. Rao	Universities Press (1997)
Thermodynamics	1.V.C. Rau	Offiversities Fless (1997)
Chemical Process	D.C. Verla	Prentice Hall India, 1994
Thermodynamics 3 rd Ed,	B.G. Kyle	
Chemical Process Principles	Hougen, O.A., Watson,	John Wiley & Sons, (CBS
Part II	K.M., and Ragatz, R.A.	Publishers

Web Material Links:

• http://nptel.ac.in/courses/103106070/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Tutorial which should be evaluated out of 10 marks for each Tutorial and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2070	CHEMICAL ENGINEERING THERMODYNAMICS-I
CO 1	Relate the terminology associated with engineering thermodynamics.
CO 2	Evaluate changes in different thermodynamic properties for pure fluids using eos.
CO 3	Correlate experimental vle data of pure component and ideal mixtures with suitable equations.
CO 4	Calculate feasibility of reaction, heat of reaction, extent of reaction & equilibrium composition.
CO 5	Construct to devise a technically feasible refrigerator for wide applications.

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to the laws of Thermodynamics	1,2
2	Properties of pure fluids	2,3
3	Estimation of VLE data	3,4,5
4	Phase Diagrams in Thermodynamics	4
5	Thermodynamic Properties of Solutions	4,5,6
6	Refrigeration and liquefaction	5,6

THIRD YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B.TECH. THIRD YEAR PHARMACEUTICAL ENGINEERING PROGRAMME

		Course Name		Teaching Scheme					Examination Scheme						
Sem	Course Code		Offered		Contact Hours			Credit	Theory		Practical		Tutorial		Total
	Gode		by	Theory	Practical	Tutorial	Total	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
	SEPE3010	Industrial Pharmacy	PE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE3021	General Pharmacology-II	PE	4	2	0	6	5	40	60	20	30	0	0	150
	SEPE3030	Medicinal Chemistry	PE	3	2	0	5	4	40	60	20	30	0	0	150
5	SEPE3910	Industry Aligned Learning-III	PE	3	0	0	3	3	100	0	0	0	0	0	100
	CFLS3021	Foreign Language-II	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
	SEPD3050	Integrated Personality	SEPD	2	0	0	2	1	100	0	0	0	0	0	100
	SEPE3930	Summer Training	PE		4		0	4	0	0	100	0	0	0	100
		Elective-I	СН	3	0	0	3	3	40	60	0	0	0	0	100
			Total				26	26							950
	SEPE3040	Chemistry of Natural Products	PE	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE3050	Technology of Solid Dosage	PE	3	2	0	5	4	40	60	20	30	0	0	150
6	SEPE3060	Quality Control & Quality Assurance – Instrumentation & Validation Process	PE	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE3920	Industry Aligned Learning-IV	PE	3	0	0	3	3	100	0	0	0	0	0	100
	SECH3052	Chemical Reaction Kinetics-I	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE3490	Online NPTEL Course		3	0	0	3	3	100	0	0	0	0	0	100
	SEPD3020	Corporate Grooming & Etiquette	SEPD	1	2	0	3	2	0	0	5	5	0	0	100
			Total				25	22							800

	Elective Courses														
Offered	C		0.00		Teach	ing Scheme)			Examination Scheme					
from	Course Code	Course Name	Offered By		Contact l	Hours		Credit	Th	eory	Pra	ctical	Tut	orial	Total
Sem.	Sem.	Бу	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
	SECH3510	Pharma Technology – API & Formulation	СН	3	0	0	3	3	40	60	0	0	0	0	100
5	SECH3520	Process Auxiliaries & Utilities in Allied Industries	СН	3	0	0	3	3	40	60	0	0	0	0	100
	SECH3530	Air Pollution & Control	СН	3	0	0	3	3	40	60	0	0	0	0	100
	SECH3540	Polymer Science & Technology	СН	3	0	0	3	3	40	60	0	0	0	0	100

Department of Pharmaceutical Engineering

Course Code: SEPE3010

Course Name: Industrial Pharmacy

Prerequisite Course/s: --

Teaching & Examination Scheme:

Tead	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)											
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total					
Theory	Practical 7	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	05	40	60	20	30	00	00	100					

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Know the various pharmaceutical dosage forms and their manufacturing techniques.
- Know various considerations in development of pharmaceutical dosage forms.
- Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality.

Section I							
Module No.	Content	Hours	Weightage in %				
1.	Preformulation Studies: Introduction to preformulation, goals and objectives, study of physicochemical characteristics of drug substances. a. Physical properties: Physical form (crystal & amorphous), particle size, shape, flow properties, solubility profile (pKa, pH, partition coefficient), polymorphism b. Chemical Properties: Hydrolysis, oxidation, reduction, racemisation, polymerization BCS classification of drugs & its significant Application of preformulation considerations in the development of solid, liquid oral and parenteral dosage forms and its impact on stability of dosage forms.	10	20				
2.	Tablets: a. Introduction, ideal characteristics of tablets, classification of tablets. Excipients, Formulation of tablets, granulation methods, compression and processing problems. Equipments and tablet tooling. b. Tablet coating: Types of coating, coating materials, formulation of coating composition, methods of coating, equipment employed and defects in coating. c. Quality control tests: In process and finished product tests	08	15				
3.	Capsules: a. Hard gelatin capsules: Introduction, Production of hard gelatin capsule shells. Size of capsules, Filling, finishing and	07	15				

special techniques of formulation of hard gelatin capsules, manufacturing defects. In process and final product quality control tests for capsules. b. Soft gelatin capsules: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Section II Module No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity. b. Production procedure, production facilities and controls,
control tests for capsules. b. Soft gelatin capsules: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Section II Module No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
b. Soft gelatin capsules: Nature of shell and capsule content, size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Section II Module No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
size of capsules, importance of base adsorption and minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Section II Module No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
minim/gram factors, production, in process and final product quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Section II
quality control tests. Packing, storage and stability testing of soft gelatin capsules and their applications. Section II Module No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
of soft gelatin capsules and their applications. Section II Module No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
Module No. Content Hours Weightage in %
Module No. Content Hours Weightage in % Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
No. Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
Parenteral Products: a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
a. Definition, types, advantages and limitations. Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
Preformulation factors and essential requirements, vehicles, additives, importance of isotonicity.
additives, importance of isotonicity.
h Production procedure production facilities and controls
b. I roduction procedure, production facilities and controls,
4. aseptic processing 10 20
c. Formulation of injections, sterile powders, large volume
parenterals and lyophilized products.
d. Containers and closures selection, filling and sealing of
ampoules, vials and infusion fluids. Quality control tests of
parenteral products.
Cosmetics: Formulation and preparation of the following
5. cosmetic preparations: lipsticks, shampoos, cold cream and 05 15
vanishing cream, tooth pastes, hair dyes and sunscreens.
Pharmaceutical Aerosols: Definition, propellants,
6. containers, valves, types of aerosol systems; formulation and
manufacture of aerosols; Evaluation of aerosols; Quality
control and stability studies.

List of Experiments

S.no	Experiment list	Hours			
1	Preformulation studies on paracetamol/asparin/or any other drug	04			
2	Preparation and evaluation of Paracetamol tablets 04				
3	Preparation and evaluation of Aspirin tablets 03				
4	Coating of tablets- film coating of tables/granules	02			
5	Preparation and evaluation of Tetracycline capsules	03			
6	Preparation of Calcium Gluconate injection	02			
7	Preparation of Ascorbic Acid injection 02				
8	Qulaity control test of (as per IP) marketed tablets and capsules 03				
9	Preparation of Eye drops/ and Eye ointments	02			
10	Preparation of Creams (cold / vanishing cream)	02			

Text Book(s):

Title	Author/s	Publication
Drug stability - Principles and practice	Cartensen & C.J.	3rd Edition, Marcel Dekker Series, Vol
	Rhodes	107.

Reference Book(s):

Title	Author/s	Publication
Pharmaceutical dosage form disperse	Liberman &	
system VOL-1	Lachman	Prentice Hall

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam

Course Outcome(s):

After the completion of the course, the students will be able to:

INDUSTRIAL PHARMACY			
Outline the objectives and applications of preformulation studies in the development and stability of dosage forms.			
Discuss the formulation, manufacturing, coating and quality control tests of tablets.			
Review the formulation and manufacturing considerations of liquid orals.			
Illustrate the pharmaceutical aspects of capsules and pellets.			
Describe the preparation and quality control of parenteral and ophthalmic preparations.			

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Preformulation Studies	1,2
2	Tablets	1,2,3
3	Capsules	1,3
4	Parenteral Products	1,2
5	Cosmetics	1,3,2
6	Pharmaceutical Aerosols	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3021

Course Name: General Pharmacology II

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	02	00	05	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and Contraindications) of drugs
- Understand mechanism of drugs acting on different systems of body
- emphasis on the basic concepts of bioassay.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Pharmacology of drugs acting on cardio vascular system Introduction to hemodynamic and electrophysiology of heart, Drugs used in congestive heart failure, Drugs used in congestive heart failure, Anti-hypertensive drugs, Anti- anginal drugs, Anti-arrhythmic drugs, Anti-hyperlipidemic drugs	08	10
2.	Pharmacology of drugs acting on cardio vascular system Drug used in the therapy of shock, Hematinics, coagulants and anticoagulants, Fibrinolytics and anti-platelet drugs, Plasma volume expanders	07	15
3.	Pharmacology of drugs acting on urinary system Diuretics Anti-diuretics, Urinary Antiseptics, Cholinergics & AntiCholinergics, Acidifiers & Alkanizers.	15	25
	Section II		_
Module No.	Content	Hours	Weightage in %
4.	Autocoids and related drugs Introduction to autacoids and classification, Histamine, 5-HT and their antagonists, Prostaglandins, Thromboxanes and Leukotrienes, Angiotensin, Bradykinin and Substance P, Nonsteroidal anti-inflammatory agents, Anti-gout drugs, Antirheumatic drugs	10	10

5.	Pharmacology of drugs acting on endocrine system Basic concepts in endocrine pharmacology, Anterior Pituitary hormones- analogues and their inhibitors, Thyroid hormones- analogues and their inhibitors, Hormones regulating plasma calcium level- Parathormone, Calcitonin and Vitamin-D,	10	20
	Insulin, Oral Hypoglycemic agents and glucagon, ACTH and corticosteroids		
6.	Pharmacology of drugs acting on endocrine system Androgens and Anabolic steroids, Estrogens, progesterone and oral contraceptives, Drugs acting on the uterus, Bioassay:- Principles and applications of bioassay, Types of bioassay, Bioassay of insulin, oxytocin, vasopressin, ACTH,dtubocurarine,digitalis, histamine and 5-HT	10	20

List of Experiments

S.no	Experiment list	Hours
1	Introduction to in-vitro pharmacology and physiological salt solutions.	04
2	Effect of drugs on isolated frog heart.	04
3	Effect of drugs on blood pressure and heart rate of dog.	03
4	Study of diuretic activity of drugs using rats/mice.	02
5	DRC of acetylcholine using frog rectus abdominis muscle.	03
6	Effect of physostigmine and atropine on DRC of acetylcholine using frog rectus	02
	abdominis muscle and rat ileum respectively.	
7	Bioassay of histamine using guinea pig ileum by matching method.	02
8	Bioassay of oxytocin using rat uterine horn by interpolation method.	03
9	Bioassay of serotonin using rat fundus strip by three point bioassay.	02
10	Bioassay of acetylcholine using rat ileum/colon by four point bioassay.	02

Text Book(s):

Title	Author/s	Publication
Essentials of Medical Pharmacology	K.D.Tripathi.	JAYPEE Brothers Medical Publishers (P) Ltd
Handbook of experimental pharmacology	Kulkarni SK.	Vallabh Prakashan.

Reference Book(s):

Title	Author/s	Publication
	Sharma H. L.,	
Principles of Pharmacology	Sharma K. K.,	Paras medical publisher
Fundamentals of Experimental Pharmacology	Ghosh MN	Hilton & Company, Kolkata

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE3021	GENERAL PHARMACOLOGY II
CO 1	Understand the mechanism of drug action and its relevance in the treatment of different diseases.
CO 2	Demonstrate isolation of different organs/tissues from the laboratory animals by simulated experiments.
CO 3	Demonstrate the various receptor actions using isolated tissue preparation.
CO 4	Appreciate correlation of pharmacology with related medical sciences.

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Pharmacology of drugs acting on cardio vascular	1,2
	system	
2	Pharmacology of drugs acting on cardio vascular	2,4
	system	
3	Pharmacology of drugs acting on urinary system	2,4,5
4	Autocoids and related drugs	2,3,4,5
5	Pharmacology of drugs acting on endocrine system	1,2
6	Pharmacology of drugs acting on endocrine system	2,4

Department of Pharmaceutical Engineering

Course Code: SEPE3030

Course Name: Medicinal Chemistry

Prerequisite Course/s: --

Teaching & Examination Scheme:

Tead	ching Scheme	e (Hours/We	eek)	Examination			on Scher			
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	05	40	60	20	30	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know the basics of medicinal chemistry, biochemical and molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects.
- Understand various physicochemical properties of drug molecules in the designing the dosage forms.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	PRINCIPLES OF MEDICINAL CHEMISTRY History/development of medicinal chemistry, Physicochemical properties in relation to biological action – Ionization, Drug distribution and pKa values, hydrogen bonding, protein binding, chelation, optical and geometrical isomerism, steric effect, redox potential and surface activity. Prodrugs –concepts/application of prodrug design.Introduction to QSAR.	10	20
2.	MEDICINAL CHEMISTRY OF DRUGS ACTING ON CNS Classification, biochemical/molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects, physiochemical properties and synthesis of selected drugs belonging to the class of General anaesthetics, Anxiolytics, Sedatives and Hypnotics, Antipsychotics, Anticonvulsants/antiepileptics, CNS stimulants and Psychedelics, Analgesics, Morphine and related drugs.	10	15
3.	MEDICINAL CHEMISTRY OF DRUGS ACTING ON ANS Classification, biochemical/molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects, and synthesis of selected drugs belonging to the class of adrenergic neurotransmitters, sympathomimetic agents. adrenergic antagonists, cholinergic receptors drugs	10	15

	and related agents, cholinergic blocking agents, ganglionic		
	blocking agents and neuromuscular blockers.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
4.	MEDICINAL CHEMISTRY OF LOCAL ANAESTHETICS AND DIURETICS Classification, structural basis of mechanism of action, structure activity relationship including stereo chemical aspects, physiochemical properties, design and synthesis of selected drugs belonging to the class of local anaesthetics and diuretics.	05	25
5.	MEDICINAL CHEMISTRY OF ANTIHISTAMINIC AGENTS AND EICOSANOIDS Classification, structure basis of mechanism of action, structure activity relationship including drugs acting on Histamine receptors, eicosanoids biosynthesis, drug action mediated by eicosanoids, design of eicosanoid drugs, antipyretics, anti-rheumatoid drugs and nonsteroidal anti-inflammatory drugs.	10	25

List of Experiments

Sr. No.	Experiment List	Hours
1.	Study on stereo-chemistry of some selected drugs with models and in-	04
	silico viewer	
2.	Synthesis of Drugs used in Diabetes involving two or more steps and	04
3.	Synthesis of Drugs used in Anti-Hypertensive drugs involving two or more steps and	04
4.	Synthesis of Drugs used in Gastro-intestinal disorders drugs involving	04
5.	Synthesis of Drugs used in Respiratory disorders drugs involving two	04
6.	Establishing the Pharmacopoeial standards of the Diabetes drugs	04
7.	Establishing the Pharmacopoeial standards of the Anti-Hypertensive	04
7.	drugs synthesized.	
8.	Establishing the Pharmacopoeial standards of the Gastro-intestinal	02

Text Book(s):

Title	Author/s	Publication
Organic medicinal and Pharmaceutical	Wilson and	Wolters Kluwer
Chemistry	Giswold's	
Principles of Medicinal Chemistry	Foye's	Wolters Kluwer

Reference Book(s):

Title	Author/s	Publication
Medicinal Chemistry	Burger's	PrenticeHall
Introduction to principles of drug design	Smith and Williams.	Boca Raton

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

Tittel the com	piction of the course, the students will be able to.
SEPE3030	MEDICINAL CHEMISTRY
CO 1	Recall the various classes of medicinal compounds
CO 2	Explain the physicochemical properties, steric aspects of drugs and their metabolic pathways
CO 3	Identify the structural requirements of drugs to elicit biological response
CO 4	Design the synthetic routes for medicinal compounds
CO 5	Choose the appropriate medicinal compound for treatment of disease or disorder

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Principles of medicinal chemistry	1,2
2	Medicinal chemistry of drugs on CNS	1,2,3
3	Medicinal chemistry of drugs acting on ANS	1,2,3
4	Medicinal chemistry of local an aesthetics and diuretics	1,3,5
5	Medicinal chemistry of antihistaminic agents and eicosanoids	1,2,3

Department of Pharmaceutical Engineering

Course Code: SEPE3910

Course Name: Industry Aligned Learning-III

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	100	00	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To deliver knowledge regarding utilities used in pharma industries

To provide knowledge of management for safety systems

Course Content:

	Section I							
Module	Content	Hours	Weightage					
No.			in %					
1.	Uses of different Utilities required in Pharmaceutical Industry	10	30					
2.	Importance and Elements of Equipment Qualification	10	20					
	Section II							
Module	Content	Hours	Weightage					
No.			in %					
	Purified water: A basic need to Pharmaceutical Industry,							
3.	Installation, Qualification and Validation of Purified Water	20	30					
	System.							
4.	Safety systems and Procedures for Pharmaceutical Industry	5	20					

Text Book(s):

Title	Author/s	Publication
ICH Guideline Q10	Global Society	Indian Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE3910	INDUSTRY ALIGNED LEARNING-III
SEPE3910	INDUSTRY ALIGNED LEARNING-III
CO 1	Acquire knowledge regarding various utilities required in Pharmaceutical Industry
CO 2	Ability to identify different kinds of equipment's used in pharmaceuticals industry.
CO 3	Knowledge to established purify water technologies.
CO 4	Identify various safety systems for pharmaceutical industry.

• Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Uses of different Utilities required	1,2
	Pharmaceutical Industry	
2	Importance and Elements of Equipment	1,2,3
	Qualification	
3	Purified water	1,2
4	Safety systems	1,2

Department of Petroleum Engineering

Course Code: SEPE3930

Course Name: Summer Training

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	00	00	04	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- have first-hand experience the real time situations in industrial scenario.
- get familiar with engineering applications in industrial spectrum
- learn to adapt themselves in professional scenario

Outline of the Course:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Sr. No. Evaluation criteria					
1	Actual work carried & Report Submission	50				
2	Final Presentation & Question-Answer session	50				
	Grand Total:	100				

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

	3 F					
SEPE3930	SUMMER TRAINING					
CO 1	Adequate with multinational industries and processes.					
CO 2	Understand the future prospects in the process allied industries.					
CO 3	Understand the requirement of the Industry and their compliances.					

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Selection of Companies	1,2,3,4
2	Company Information collection	1,2,3,4
3	Report Writing	1,2,3,4
4	Presentation & Question-Answer	1,2,3,4

Report Writing Guidelines

A. Report Format:

15. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.

16. Project Certification Form

[The form should be duly filled signed by the supervisors.]

17. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 18. Table of Contents/Index with page numbering
- 19. List of Tables, Figures, Schemes
- 20. Summary/abstract of the report.
- 21. Introduction/Objectives of the identified problem
- 22. Data Analysis and Finding of Solution
- 23. Application of the identified solution
- 24. Future Scope of enhancement of the Project and Conclusion
- 25. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 26. References(must)
- 27. Bibliography
- 28. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references

Department of Chemical Engineering

Course Code: SECH3510

Course Name: Pharma Technology - API and Formulation

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tutorial		Total
Theory	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	0	3	40	60	0	0	0	0	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- have basic knowledge of the design and operation of pharmaceutical units and of the steps of development of dosage forms through to the final product and submission to the Health authorities for Production license and marketing.
- clear the concept and the importance of particle size and particle shape in drug formulation.
- understand of the mechanism of basic pharmaceutical operations including size reduction, mixing, separation processes, filtration, drying and freeze-drying, its importance in drug formulation and practical application on a laboratory scale.

	Section I - Active Pharmaceutical Ingredients - API						
Module No.	Content	Hours	Weightage in %				
1.	Introduction to Basic Pharmaceutical and Fine Chemical Industry Definitions of Basic Pharmaceuticals, Intermediates, Fine Chemicals, Heavy Chemicals, Technology involved in Manufacturing of Pharmaceuticals, Unit Processes in Synthesis, Biochemical Processes in Synthesis.	06	15				
2.	Unit Processes involved in Pharma Industry Study of the Following Chemical Processes (With References to Reagents, Mechanisms, Equipment and Manufacture of Drugs given below): Acylation, Esterification, Alkylation, Amination, Halogenation, Hydrolysis, Nitration, Oxidation and Reduction.	06	10				

	Unit Operations involved in Pharma Industry		
3.	Operation of Reactor, Centrifuge, Dryer, Cooling Tower, Heat Exchanger – Design, Working Principle, Validation and Cleaning Strategies, Powder Processing Area (PPA) – Conditions, Validation and Cleaning processes.	10	25
	Section II - Formulations		
Module No	Content	Hours	Weightage in %
4.	Solid Formulation Basics of Process Automation of Solid Dosage Form Production, Study of Newer Excipients used in Gastro Retentive, Mucoadhesive Systems and Colon Specific and Sustained Release, Pulsatile Drug Delivery Systems, Formulation Development of Mouth Dissolving Tablets, Taste Masking Formulation, Sublingual and Buccal Formulations.	07	15
5.	Liquid Formulation Study of Advances in Liquid Formulation including Multiple Emulsion, Micro Emulsion including Self Emulsified Drug Delivery Systems and Self Micro Emulsified Drug Delivery Systems.	05	10
6.	Semisolids Formulation Semisolid Formulation with Special Reference to Penetration Enhancers, Emulgels, Semisolids based on Liposomes, Niosomes.	04	10
7.	Inhalation Aerosols Inhalation Products- Types and Clinical Role, Basic Components of Aerosol Formulations, Therapeutic Aerosols, Metered Dose Inhalers, Dry powder Inhalers, Detailed Discussion on Propellants, Package and Filling Technology, Quality Assurance of Components and Formulations	07	15

Text Book(s):

(-)		
Title	Author/s	Publication
Modern Pharmaceutics - Fourth Edition	Gilbert and S. Banker and	Marcel Decker Series
	Christofer T. Rhodes	
Advanced Pharmaceutics: Physicochemical	Cherng-Ju uim	CRC Press – 2004
principles		
Unit Processes in Pharmacy	Ganderton David	Elsevier Ltd.
The Theory and Practice of Industrial	L. Lachman	CBS Publishers
Pharmacy		

Reference Book(s):

Title	Author/s	Publication
Physical characterization of	H. T. Brittain	Marcel-Decker Series
Pharmaceutical Solids - Volume 70		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3510	PHARMA TECHNOLOGY - API & FORMULATION
CO 1	Identify basic unit processes and unit operations involved in pharma industry.
CO 2	Relate the different equipment with usage and applications.
CO 3	Differentiate api and formulation in the pharmaceutical industries
CO 4	Apply knowledge of basic science in dosage and formulation to enhance the plant efficiency.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Basic Pharmaceutical and Fine	1,2
	Chemical Industry	,
2	Unit Processes involved in Pharma Industry	1,2
3	Unit Operations involved in Pharma Industry	1,2
4	Solid Formulation	1,2
5	Liquid Formulation	1,2
6	Semisolids Formulation	1,2
7	Inhalation Aerosols	1,2

Department of Chemical Engineering

Course Code: SECH3520

Course Name: Process Auxiliaries and Utilities in Allied industries

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Dwastigal	Tutovial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the designing the process plants or creating design layouts of plant.
- understand fundamentals of chemical engineering viz. development of flow diagrams, importance of various design consideration during the development and design of any process.
- rapidly increase advancement of knowledge and relevant importance and application of various process auxiliaries and utilities used in industries.
- deals with the basics as well as advanced understanding of various process auxiliaries and utilities used in chemical plant.

- COUISC C	United to					
	Section I – Process Auxiliaries in Allied Industries					
Module No.	Content	Hours	Weightage in %			
1.	Process Auxiliaries Basic Considerations and Flow Diagrams in Chemical Engineering Plant Design.	03	05			
2.	Piping Design Selection of Material, Pipe Sizes, Working Pressure, Basic Principles of Piping Design, Piping Drawings, Pipe Installations, Overhead Installations, Process Steam Piping, Selection and Determination of Steam – Pipe Size, Piping Insulation, Application of Piping Insulation, Weather Proof and Fire Resisting Pipe Insulation Jackets, Piping Fittings, Pipe Joints.	10	20			
3.	Valves Types of Valves, Selection Criteria of Valves for various systems.	05	10			
4.	Pumps Types of Pumps, NPSH Requirement, Pump Location, Pump Piping, Pump Piping Support, Process Control and Instrumentation Diagram, Control System Design for Process Auxiliaries.	5	15			

	Section II - Process Utilities in Allied Industries			
Module No.	Content	Hours	Weightage in %	
5.	Process Utilities Process Water: Sources of Water, Hard and Soft water, Requisites of Industrial Water and its Uses, Methods of Water Treatment, Chemical Softening, Demineralization, Resins Used for Water Softening, Water for Boiler, Cooling Purposes, cooling towers, Drinking and Process Water Treatment.	08	15	
6.	Steam Steam Generation and its Application in Chemical Process Plants, Distribution and Utilization, Steam Economy, Condensate Utilization, Steam Traps and their Characteristics, Selection and Application, Waste Heat Utilization.	08	15	
7.	Compressors and Vacuum Pumps Types of Compressors and Vacuum Pumps and their Performance Characteristics, Methods of Vacuum Development and their Limitations, Materials Handling Under Vacuum, Lubrication and Oil Removal in Compressors and Pumps, Instrument Air.	04	15	
8.	Refrigeration System Refrigeration and Chilling Systems, Oil Heating Systems, Nitrogen Systems.	02	5	

Text Book(s):

Title	Author/s	Publication
Process Plant layout and Piping	Roger Hunt and Ed	PTR Prentice-Hall Inc
Design	Bausbacher	PTR Prentice-nail flic
Process utility systems	Jack Broughton	Institution of Chem. Engineers,
		U.K.

Reference Book(s):

Chemical Engineering Plant	F.C. Vibrandt and C.E. Dryden	McGraw Hill, Fifth Edition
Design		
Plant design and Economics for	M.S. Peters and Timmerhaus	Mc Graw Hill 3rd Edition
Chemical Engineers		

Web Material Link(s):

• https://nptel.ac.in/syllabus/105102089/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3520	PROCESS AUXILIARIES & UTILITIES IN ALLIED INDUSTRIES
CO 1	Describe overall knowledge about the process plant.
CO 2	Anlayze the importance of process auxiliaries and utilities in process industries.
CO 3	Apply the conceptual design of chemical process plant.
CO 4	Build a bridge between theoretical and practical concepts used for process auxiliaries and utilities in any process industry.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Process Auxiliaries	1,2,3,4
2	Piping Design	1,2,3,4,5,6
3	Valves	1,2,3,4
4	Pumps	1,2,3,4
5	Process Utilities	1,2,3,4
6	Steam	1,3,4,5
7	Compressors and Vacuum Pumps	1,2,3,4,5
8	Refrigeration System	1,2,4

Department of Chemical Engineering

Course Code: SECH3530

Course Name: Air Pollution & Control

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	eory Practical Tutorial	Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Fractical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand various effects of air pollution.
- impart the knowledge on air pollution.
- analyze causes and effects of air pollution.
- familiarize with strategic planning for control of air pollution.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Air Pollution Definition of Air Pollution - Sources and Classification of Air Pollutants-Effects of Air Pollution-Global Effects-Air Quality Emission Standards-Sampling of Pollutants in Ambient Air-Stack Sampling.	6	15				
2.	Meteorology and Air Pollution Factors influencing Air Pollution, Wind Rose, Mixing Depths, Lapse Rates and Dispersion, Atmospheric Stability, Plume rise and Dispersion, Prediction of Air Quality, Box Model, Gaussian model, Dispersion Coefficient, Application of Tall Chimney for Pollutant Dispersion.	6	15				
3.	Control of Particulate Pollutants Properties of Particulate Pollution, Particle Size Distribution, Control Mechanism, Dust Removal Equipment, Design and Operation of Settling Chambers, Cyclones, Wet Dust Rubbers, Fabric Filters and ESP.	6	10				
4.	Control of Gaseous Pollutant Process and Equipment for the Removal of Gaseous Pollutants by Chemical Methods – Design and Operation of Absorption and Adsorption Equipment, Combustion and Condensation equipment.	5	10				

	Section II						
Module	Content	Hours	Weightage				
		Hours	in %				
	Control Of Air Pollution						
5.	Zoning and Site Selection-Other Management Controls, API	7	15				
	Legislation, Automobile Pollution and Control-Emission Standards.						
	Urban Air Pollution						
6.	Sectoral Analysis, Trends in Major Cities of India and Government	4	10				
	initiatives.						
7.	Introduction to indoor air pollution	4	10				
	Global effects of air pollution						
8.	Green House Effects, Acid Rain and Ozone Layer Depletion,	7	15				
	International Agreements for Mitigating Global Air Pollution Effects.						

Text Book(s):

Title Author/s		Publication
Air pollution	Wark and Warner	Harper & Row, New York.
Air Pollution	M.N.Rao and H.V.N.Rao	McGraw Hill Education
Air pollution	Prof. K.V.S.G. Muralikrishna	Kaushal Publications – Kakinada

Reference Book(s):

An introduction to Air Pollution	R.K. Trivedy and P.K. Goel	B.S. Publications
----------------------------------	----------------------------	-------------------

Web Material Link(s):

• https://nptel.ac.in/syllabus/105102089/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3530	AIR POLLUTION & CONTROL
CO 1	Design various air pollution control equipment and evaluate its use.
Classify and identify the sources of air pollutants and predict the effects of air	
CO 2	pollutant on human health and environment.
CO 3	Analyze the air quality and relate with air pollution regulation.
CO 4	Apply and relate the significance of various air pollution dispersion models.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Air Pollution	1, 2
2	Meteorology and Air Pollution	1,2,3,6
3	Control of Particulate Pollutants	2, 4
4	Control of Gaseous Pollutant	2, 4
5	Control Of Air Pollution	1,2,5
6	Urban Air Pollution	1,2
7	Introduction to indoor air pollution	1,2
8	Global effects of air pollution	1,2

Department of Chemical Engineering

Course Code: SECH3540

Course Name: Polymer Science & Technology

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)		Examination Scheme (Marks)								
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- get knowledge of polymers, polymerization techniques and behavior in polymers.
- explore various types of thermoplastics, thermosetting and elastomers.
- Familiarize with various polymer processing techniques for polymers, rubbers and fibers.
- get knowledge on various testing methods and characterization of polymers.
- get knowledge on specialty polymers.

	Section I		
Module	Content	Hours	Weightage
No.		Hours	in %
1.	Introduction to Polymers Polymers, Polymerization, History of polymers, Pioneers in Polymer Science, Chemistry of Polymerization –Addition, Condensation, Coordination Polymerization –Mechanism and Kinetics, Degree of Polymerization, Polymerization Conditions (Bulk, Solution, Precipitation, Suspension, Emulsion, Interfacial), Crystallinity– Polymer Single Crystals, Spherulite Sand Glass Transition Temperature(tg).	07	15
2.	Thermoplastics, Thermosetting and Elastomers Thermoplastic Polymers – Poly-Olefins – Vinyl Polymers – Polystyrene, PMMA - Pan, Thermoplastic Polymers – Teflon – Polyamides – Polycarbonates and their Applications, Thermosetting Polymers – Phenolic Resins – Polyesters – Epoxies – Polyurethanes and their Applications, Elastomers- Natural rubber – Isoprene Rubber, Synthetic Rubbers - Butadiene Rubber- Butyl Rubber- Styrene Butadiene Rubber, Chloroprene Rubber- Nitrile Rubber - Silicone Rubber.	10	25
3.	Polymer Processing	06	10

	Processing of Thermoplastics and Thermosetting plastics – Compounding and Processing Aids, Compression Moulding - Injection Moulding – Extrusion Moulding, Blow Moulding, Rotational Moulding, Transfer Moulding, Processing of Rubbers – Vulcanization, Mastication – Calendaring, Reaction Injection Moulding – Solution Casting – SMC and DMC, Fiber Spinning and Drawing.		
	Section II		
Module No.	Content	Hours	Weightage in %
4.	Testing & Characterization of Polymers Polymer Characterization Tests - Melt Flow Index, Capillary Rheometer Test, Viscosity Test, GPC, Thermal Analysis Techniques - DSC, TGA and TMA, Morphology - SEM, TEM, XRD, Mechanical Properties- Tensile Test, Impact Test, Hardness, Electrical properties -Di-Electric Strength & Di-Electric Constant, Thermal Properties-HDT, Vicat.	12	30
5.	Specialty Polymers Poly-Electrolytes and Ionomers, Conducting Polymers -Electro-Luminescent Polymers, High temperature Polymers and Polymer Blends, Polymer Composites and Nano-Composites, Interpenetrating Polymer Networks, Liquid Crystalline Polymers, Biomedical Polymers.	10	20

Text Book(s):

Title	Author/s	Publication
	V R Gowariker, Vasant R. Gowariker, N V	New Age
Polymer Science	Viswanathan, JayadevSreedhar	International, 2nd
		Edition
Polymer Science and	Joel R.Fried	PHI, Eastern Economy
Technology		Edition, 2nd Edition

Reference Book(s):

Text book of Polymer Science	Billmeyer F. W.	3rd edn., Wiley, Singapore, 1984
Speciality Polymers	R.W. Dyson	Chapman and Hall, New York, 1987
Handbook of Plastics Testing Technology	Vishu Shah	Wiley international publication

Web Material Link(s):

• https://nptel.ac.in/courses/113105028/

Course Evaluation:

Theory:

• Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.

- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3540	POLYMER SCIENCE & TECHNOLOGY
CO 1	Elaborate on step growth and chain polymerization with respect to mechanism and
COT	kinetics.
CO 2	Elaborate on the differences between crystalline melting temperature and glass
CO 2	transition temperature, as well as the effect of kinetics on both.
CO 3	Distinguish between absolute and relative methods for molecular weight
603	determination.
CO 4	Interpret experimental data and determine parameters such as polymerization rates
CU 4	and copolymer composition.
CO 5	Estimate the solubility of a given polymer in various solvents and blends.

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Polymers	1,2
2	Thermoplastics, Thermosetting and Elastomers	1,2
3	Polymer Processing	1,2,4
4	Testing & Characterization of Polymers	1,2,4
5	Specialty Polymers	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3040

Course Name: Chemistry of Natural Products

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week) Exam				ıminatio	n Schen	ne (Marl	rs)			
Theory	Dragtical	Tutorial	Credit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To learn, classify and understand chemistry and structural aspects of medicinal compounds from various natural sources and relate to therapeutic applications

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	STRUCTURAL BASIS OF NATURAL PRODUCTS Chemical and spectral approaches to simple molecules of natural origin. identification of natural products by chromatographic and spectroscopic methods and application of I.R., N.M.R. and Mass spectroscopy in the structural elucidation of organic compounds. Concept of stereoisomerism taking examples of natural products Eg. citral, menthol, camphor, ephedrine, atropine etc.; standardization of traditional drug formulations, chromatographic study of some herbal constituents.	08	20			
2.	GLYCOSIDES Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, isolation, medicinal properties and structural elucidation of sennosides, cardinolides and bufadienolides, digoxin and digitoxin, introduction to scillaren A and ouabein.	08	15			
3.	ALKALOIDS Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, isolation and structural	06	15			

	elucidation of Pyridine alkaloids, Tropane alkaloids, Quinoline and Isoquinoline alkaloids, Phenanthrine alkaloids, Indole alkaloids, Imidazole alkaloids, Alkaloid amines, Glycoalkaloid, Xanthine alkaloid.		
	Section II		
Module No.	Content	Hours	Weightage in %
4.	TERPENES AND FLAVONOIDS Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, isolation, medicinal properties and structural elucidation, flavonoids, quercetin; Terpenes– special isoprene rule, mono, diterpenes, triterpenoids and sesquiterpenes, and structural elucidation of citral, carvone, menthol and camphor; Steroids – cholesterol, colour reactions, reactions of steroids, stigmasterol, β-Sitotsterol, bile acids, ergosterol, diosgenin, solasodine, hecogenin.	12	30
5.	STUDY OF TRADITIONAL DRUGS Classification of indigenous drugs traditional drugs, common vernacular names, botanical source, chemical constituents, uses and marketed formulations with ingredients like – Amla, Satavari, Bhilwua, bael, bach, rasna, punarnava, gokhru, shankhapusphi, brahmi adusa, arjuna, lahsun, guggul, gymnema, neem ,tulsi, Shilajit and Spirulina.	11	20

Text Book(s):

Title	Author/s	Publication
Chemistry of Organic Natural Products	O.P. Agarwal	Krishna Prakashan Media
Organic Chemistry of Natural Products	Gurdeep Chatwal	Himalaya Publishing House

Reference Book(s):

Title	Author/s	Publication
Pharmacognosy	Brady and Tyler.E.	New YorkEllis Horwood 1990
Pharmacognosy	G.E. Trease & W.C.Evans.	New York, MarcelDekker 1988

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE3040	CHEMISTRY OF NATURAL PRODUCTS
CO 1	Classify extract, isolate and characterize the natural products by chemical tests.
CO 2	Understand the classification, metabolic pathways, metabolites and their structural
	elucidation.
CO 3	To know about the examples of green reactions and future trends in green reaction.
CO 4	To learn the synthesis, psychological properties, isolation medicinal importance and
	other synthetic use of terpenes and alkaloids.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Structural Basis Of Natural Products	1,2
2	Glycosides	1,2
3	Alkaloids	1,2,4
4	Terpenes and Flavonoids	1,2,4
5	Study Of Traditional Drugs	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3050

Course Name: Technology of Solid Dosage forms

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exai	minatio	n Schem	ie (Mark	rs)		
Theory	December 1	Total	utorial Cradit		eory	Prac	tical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	05	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To provide the concepts of various parameters involved in the formulation and development of various dosage forms.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	PREFORMULATION STUDIES Study of physical/physicochemical properties of drugs like physical form, particle size, shape, density, wetting, dielectric constant, solubility, dissolution, organoleptic properties and their effect on formulation, stability and bioavailabilty. Study of chemical properties of drugs like hydrolysis, oxidation, reduction, racemisation, polymerization etc. and their influence on formulation. Stability Studies: Basic concept and objectives of stability study.	08	20		
2.	LIQUIDS AND SEMI – SOLID DOSAGE FORMS Introduction, types of additives used, vehicles, stabilizers, preservatives, emulsifying agents, solubilizers, colors, flavours, manufacturing, packaging and evaluation of solutions, suspensions and emulsions. Definitions, types, mechanisms of drug penetration through skin, factors influencing penetration, semisolid bases and their selection. General formulation/ manufacture of semisolids, clear gels, evaluation and packaging.	07	10		

	SOLID DOSAGE FORMS		
3.	Classification of different types of tablets, tablets equipments, granulation technology on large scale by various techniques. Tablets tooling, different types of tablets compression machinery, processing problem of tablets and evaluation of tablets. Coating of tablets: Types of coating, Sugar coating, film forming materials, formulation of coating solution, equipment for coating, film defects and evaluation of coated tablets. Advantages & disadvantages of capsule dosage form, extraction of gelatin, production of hard gelatin capsules, size of capsules and method of capsule filling. Soft gelatin capsule, Nature of capsule shell & capsule content, importance of base adsorption, minimum gm factors in soft capsules, production, quality control, stability testing and storage of capsule dosage forms.	15	20
	Section II		
Module No.	Content	Hours	Weightage in %
	PARENTERAL PRODUCTS	14	30
	Preformulation factors, routes of administration, water for injection, pyrogenicity, non-aqueous vehicles,		
	isotonicity & methods of its adjustment. Formulation		
	details, containers and closures and their selection.		
4.	Prefilling treatment, washing the container and closers,		
	preparation of solution and suspension, filling, closing of ampoules, vials infusion fluids, lyophilization, preparation		
	of sterile powders, equipment for large scale manufacture		
	and evaluation of parenteral products. Aseptic		
	techniques: Source of contamination, methods of		
	prevention, design of aseptic area, laminar flow bench, air		
	handling units, services and maintenance.		
	PHARMACEUTICAL AEROSOLS		
5.	Definition, propellants, general formulation, manufacturing, packaging methods, pharmaceutical applications and evaluation.	06	20
	1		

List of Experiments

S.no	Experiment list	Hours
1	1 Preformulation studies on prepared granules. 02	
2	Preparation and evaluation of suspensions.	04
3	Preparation and evaluation of emulsions.	04
4	Preparation and evaluation of creams.	04
5	Preparation and evaluation of ointments.	04
6	Preparation and evaluation of injections.	04
7	7 Manufacture and evaluation of granules. 04	
8	Formulation and filling of hard gelatin tablets. 04	

Text Book(s):

Title	Author/s	Publication
The Science of Dosage Form Design	Aulton, Michael	2 nd Ed., Churchill Livingstone, 2002.
	E.	
	H. A. Liberman,,	Vol. 1.2 and 2. 2nd Edition Manage
	L. Lachman, and	Vol. 1,2 and 3, 2 nd Edition Marcel
Pharmaceutical dosage forms: Tablet	J. B. Schwartz	Dekke r, 1989.

Reference Book(s):

Title	Author/s	Publication
"Pharmaceutical Dosage Forms:		Vol.1-3, 2nd Ed., Marcel Dekker,
Parenteral Medications"	Avis, K.E. et al.	2005.
" Pharmaceutical Dosage Forms :	Libermann, H.A. et	Vol.1-3, 2nd Ed., Marcel Dekker,
Tablets"	al.	2005.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE3050	TECHNOLOGY OF SOLID DOSAGE FORMS
CO 1	Understand the factors influencing the development of various dosage forms.
CO 2	Understand the formulation concepts and evaluate different dosage forms to meet
	out the compendial requirements.
CO 3	Understand various physicochemical properties of drug molecules in the designing
	the dosage form.
CO 4	Appreciate physicochemical properties of drug molecules in formulation research
	and development.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Preformulation Studies	1,2
2	Liquids And Semi – Solid Dosage Forms	1.2
3	Solid Dosage Forms	2,4,5
4	Parenteral Products	2,4,5
5	Pharmaceutical Aerosols	1,2,3

Department of Pharmaceutical Engineering

Course Code: SEPE3060

Course Name: Quality Control and Quality Assurance-Instrumentation & Validation Process

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Theory Drostical Tytorial (ical Tutorial Cradit		eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• understand the importance of quality

- learn about ISO management systems
- know the tools for quality improvement
- analyze the issues in quality

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction Concept and evolution and Scopes of Quality Control and Quality Assurance, Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Q series guidelines. Good Laboratory Practices: Scope of GLP, Definitions, Quality Assurance Unit, Protocol for Conduct of Non-Clinical Testing, Control on Animal House, Report Preparation and Documentation. CPCSEA Guidelines	07	14			
2.	Inspection Convention cGMP Guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention(PIC), WHO and EMEA Covering: Organization and Personnel Responsibilities, Training, Hygiene and Personal Records, Drug Industry Location, Design, Construction and Plant Lay Out, Maintenance, Sanitation, Environmental Control, Utilities and Maintenance of Sterile Areas, Control of Contamination and Good Warehousing Practice.	07	18			
3.	Quality Control Analysis of Raw Materials, Finished Products, Packaging Materials, In Process Quality Control (IPQC), Developing Specification (Ich Q6 And Q3), Purchase Specifications and Maintenance of Stores for Raw Materials. In Process Quality Control and Finished Products Quality Control for Following Dosage Forms in Pharma Industry according	08	18			

	to Indian, US and British Pharmacopoeias: Tablets, Capsules,						
	Ointments, Suppositories, Creams, Parenterals, Ophthalmic and						
	Surgical Products (How to Refer Pharma Copoeias).						
	Section II						
Module No.	Content	Hours	Weightage in %				
4.	Documentation Documentation in Pharmaceutical Industry: Three tier documentation, Policy, Procedures and Work Instructions, and Records (Formats), Basic Principles- How to Maintain, Retention and Retrieval etc. Standard Operating Procedures (How to write), Master Batch Record, Batch Manufacturing Record, Quality Audit Plan and Reports. Specification and Test Procedures, Protocols and Reports. Distribution Records. Electronic Data Handling. Concepts of Controlled and Uncontrolled Documents. Submission documents for regulators DMFs, as Common Technical Document an Electronic Common Technical Documentation (CTD, eCTD). Concept of regulated and non regulated markets.	12	25				
5.	Manufacturing Operations and Controls Sanitation of Manufacturing Premises, Mix-Ups and Cross Contamination, Processing of Intermediates and Bulk Products, Packaging Operations, IPQC, Release of Finished Product, Process Deviations, Charge-In of Components, Time Limitations on Production, Drug Product Inspection, Expiry Date Calculation, Calculation of Yields, Production Record Review, Change Control, Sterile Products, Aseptic Process Control, Packaging, Reprocessing, Salvaging, Handling of Waste and Scrap Disposal. Introduction, Scope and Importance of Intellectual Property Rights. Concept of Trade Mark, Copyright and Patents.	11	25				

Text Book(s):

Title	Author/s	Publication
Quality Assurance Guide by organization of	D H Shah	3 rd revised edition, Volume I &
Pharmaceutical Procedures of India	DHSHall	II, Mumbai, 1996.
How to Practice GMP's	P P Sharma,	Vandana Publications, Agra, 1991.

Reference Book(s):

Title	Author/s	Publication
Quality Assurance of Pharmaceuticals- A		WHO Publications, 1999
compendium of Guide lines and Related materials		
Vol I & II, 2nd edition		
Good laboratory Practice Regulations –, Volume 38,	Allen F. Hirsch	Marcel Dekker Series,
		1989

Web Material Link(s):

• <u>www.pharmaguide.com</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SEPE3060	QUALITY CONTROL AND QUALITY ASSURANCE - INSTRUMENTATION AND VALIDATION PROCESS			
CO 1	Analyze importance of quality control and quality assrance roles in process industries.			
CO 2	Discover about iso management systems and their applications for qc qa laboratories.			
CO 3	Execute tools for quality improvement in the research and development field.			
CO 4	Analyze issues in quality control and process.			
CO 5	Predict quality evaluation of various products generated by chemical process industries.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2
2	Inspection Convention	1,2
3	Quality Control	1,2
4	Documentation	1,2
5	Manufacturing Operations and Controls	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3920

Course Name: Industry Aligned Learning-IV

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	hooms Dragtical Tutorial C		and Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• Understand various 5S system.

• Know the principles of AHU/HVAC.

Course Content:

	Section I					
Module	Content		Weightage			
No.			in %			
1.	Housekeeping and 5S System as a culture for sustainable	25	25			
1.	business	23	23			
2.	Installation, Qualification and Validation of AHU/HVAC/Dust	10	25			
۷.	& Vapor Extraction System	10	23			
	Section II					
Module	Content	Hours	Weightage			
No.			in %			
3.	Types of Maintenance: Breakdown Maintenance, Preventive	10	50			
3.	Maintenance, Predictive Maintenance	10	50			

Text Book(s):

Title	Author/s	Publication
ICH Guideline Q10	Global Society	Indian Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE3920	INDUSTRY ALIGNED LEARNING-IV				
CO 1	Acquire knowledge regarding 5S for sustainable business.				
CO 2	Ability to identify different kinds of AHU.				
CO 3	Knowledge to established energy conservation in pharmaceutical industry.				
CO 4	Identify various, Breakdown Maintenance, Preventive Maintenance, Predictive				
	Maintenance.				

1	l: Remember	2: Understand	3: Apply
4	1: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Housekeeping and 5S System as a culture for sustainable business	1,2,3
2	Installation, Qualification and Validation of AHU/HVAC/Dust & Vapor Extraction System	1,2,3,4
3	Types of Maintenance: Breakdown Maintenance, Preventive Maintenance, Predictive Maintenance	1,2,4

Department of Chemical Engineering

Course Code: SECH3052

Course Name: Chemical Reaction Kinetics - I

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tut	orial	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	ESE CE ESE	ESE	CE	ESE	Total	
03	02	00	04	40	60	20	30	00	00	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic principles of kinetics and chemical reaction engineering by the application of Stoichiometry, thermodynamics and mathematical analysis.
- utilize this knowledge in the design of industrial chemical reactors.

Section I									
Module	Content	Hours	Weightage						
No.	Content	Hours	in %						
1.	Fundamentals of Reaction Engineering Overview of chemical reaction engineering, Rate of Reaction, Elementary and non-elementary homogeneous reactions, Molecularity and order of reaction, Mechanism of reaction, Temperature dependency from thermodynamics, Collision and Activated complex theories.	04	10						
2.	Rate Laws, Kinetics and Mechanisms of Homogeneous and Heterogeneous Reactions Kinetic models for non-elementary reactions, Testing kinetic models, Temperature dependent term of rate equations from Arrhenius theory and comparison with collision and transition state theory, Activation energy and temperature dependency, Predictability of reaction rate from theory.	06	10						
3.	Analysis of Rate Data Integral and differential methods for analyzing kinetic data, interpretation of constant volume reactor, zero, first, second and third order reactions, half life period, irreversible reaction in parallel and series, catalytic reaction, auto catalytic reaction, reversible reactions.	06	10						
4.	Introduction to Reactor Design Interpretation of variable volume batch reactions for zero, first and second order reactions, design equation for batch, continuous stirred tank, plug flow reactors for isothermal	07	20						

	reaction.		
	Section II		
Module	Content	Hours	Weightage in %
5.	Design of industrial reactors Optimum reactor size, plug flow/mixed flow reactors in series and parallel, recycle reactor.	07	15
6.	Design of reactors for single and parallel reaction Size comparison of single reactors, multiple reactor systems, recycles reactor and autocatalytic reactions. Introduction to multiple reactions, qualitative and quantitative treatment of product distribution and of reactor size, the selectivity.	07	15
7.	Residence time distributions Residence time distribution of fluids in vessels, E, F and C curves, Dispersion model, Tank in series model. Non-Isothermal PFR and CSTR, Safety issues in Non-Isothermal Reactors.	08	20

List of Experiments:

Sr. No.	Name of Practical	Hours				
1.	To study the interpretation of Batch Reactor Data.	02				
2.	To determine energy of activation of reaction between ethyl acetate with sodium hydroxide.	04				
3.	ethanol.					
4.	To measure the kinetics of a reaction between ethyl acetate and sodium					
4.	hydroxide under condition of excess ethyl acetate at room temperature.					
5.	To determine the kinetics of the reaction between ethyl acetate and sodium					
J.	ydroxide at room temperature by the integral method of analysis.					
6.	To determine the kinetics of the reaction between ethyl acetate and sodium	04				
0.	hydroxide at room temperature by the differential method of analysis.					
7.	To determine reaction equilibrium constant of reaction between acetic acid	04				
/.	with ethanol.					
8.	To study the kinetics of saponification reaction between acetic acid and	04				
О.	sodium hydroxide in a batch reactor and establish the rate law.	04				

Text Book(s):

Title	Author/s	Publication
Chemical Engineering Kinetics - 3rd Edition	J. M. Smith	McGraw-Hill (1990)
Chemical Reaction Engineering - 3rd Edition	O. Levenspiel	John Wiley (1998)

Reference Book(s):

Title	Author/s	Publication
Elements of Chemical Reaction Engineering	H. Scott Fogler	Prentice Hall of India Pvt.
		Ltd
The Engineering of Chemical Reactions	L. D. Schmidt	Oxford Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3052	CHEMICAL REACTION KINETICS-I					
CO 1	Classify the concept of reactor design for chemical process industries.					
CO 2 Analyze kinetics and rate law based on experimental data obtained						
CO 2	laboratory.					
CO 3	Perform calculations on plug, mixed, and batch reactors for homogeneous and					
603	heterogeneous reactions.					
CO 4	Develop skills to choose, design and scale the right kind of reactor for a given					
CU 4	reaction.					

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Fundamentals of Reaction Engineering	2,3
2	Rate Laws, Kinetics and Mechanisms of	2,3,5
Homogeneous and Heterogeneous Reactions		2,3,3
3	Analysis of Rate Data	4,5,6
4	Introduction to Reactor Design	1,2,4
5	Design of industrial reactors	2,5,6
6	Design of reactors for single and parallel reaction	5,6
7	Residence time distributions	1,2,4,6

FOURTH YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. FOURTH YEAR PHARMACEUTICAL ENGINEERING PROGRAMME

			0.66		Teach	ning Scheme	9			Examination Scheme					
Sem	Course Code	Course Title	Offered By		Contact 1	Hours		Credit		eory	Prac	tical	Tut	orial	Total
	Couc		Бу	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SEPE4010	Regulatory Requirements in Pharmaceutical Industries	PE	4	0	0	4	4	40	60	0	0	0	0	100
	SEPE4020	Pharmaceutical Instrumental Analysis	PE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE4030	Dosage Formulation Design	PE	3	0	0	3	3	40	60	0	0	0	0	100
7	SEPE4040	Computer Applications in Pharmaceutical Engineering	PE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE4910	Industry Aligned Learning-V	PE	3	0	0	3	3	100	0	0	0	0	0	100
	SEPD4010	Creativity, Problem Solving & Innovation	SEPD	3	0	0	3	3	100	0	0	0	0	0	100
	SEPE4920	Project/Summer Internship	PE		5		0	5	0	0	100	0	0	0	100
						1	1	1							
						Total	23	26							800
8	SEPE4930	Project / Training	PE		17		20	17	0	0	200	300	0	0	500
						Total	20	17							500

Department of Pharmaceutical Engineering

Course Code: SEPE4010

Course Name: Regulatory Requirements in Pharmaceutical Industries

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teac	eaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Dwootical	Tutorial	Cradit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	00	00	04	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To provide basics of regulatory requirements of pharmaceuticals.
- To provide basics of good manufacturing practices, scientific and risk based product development approached, validations and regulatory requirements of pharmaceuticals

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Schedule governing pharmaceutical product development (e.g. Schedule M, Schedule Y).	05	10
2.	ICH guidelines Q8(R2), Q9, Q10, Q11 and Q12	05	05
3.	Documentation for pharmaceuticals	03	05
4.	 Introduction to regulatory aspects of pharmaceuticals Introduction to Regulatory aspects of pharmaceuticals, need, advantages and limitation Introduction to major regulatory bodies worldwide Rationale for regulatory harmonization and introduction of ICH Introduction to CTD Modules 	10	15
5.	Drug Master file (DMF)	02	05
6.	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines: Investigational New Drug Application (IND)- filing, review, approval process and representative case studies	05	10
	Section II		
Module No.	Content	Hours	Weightage in %

7.	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines: New Drug Application (NDA) [505 (b) (1) and (b) (2)]- filing, review, approval process and representative case studies. Abbreviated New Drug Application (ANDA) 505 (j)- filing, review, approval process and representative case studies	12	20
8.	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines: New Animal Drug Application (NADA)- filing, review, approval process and representative case studies. Biological License Application (BLA)- filing, review, approval process and representative case studies	13	20
9.	Comparison of Indian, European and rest of the world Regulatory procedure for pharmaceutical product market approval in comparison to USFDA guidelines	05	10

Text Book(s):

Title	Author/s	Publication
Modern Pharmaceutics	G. S. Banker	New York, Marcel Dekker 1990
Fundamentals of Pharmacy	Blome H. E.	Philadelphia, Fea and Febiger, 1985

Reference Book(s):

Title	Author/s	Publication
Pharmaceutical Production Facilities:		
Design and Applications	G. C. Cole	New York Ellis Horwood 1990
Drug Delivery Devices: Fundamentals and Applications	Tyle	New York, Marcel Dekker 1988

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE4010	REGULATORY REQUIREMENT IN PHARMACEUTICAL INDUSTRIES
CO 1	Explain the regulatory pathways for new drug application and generic
	product development.
CO 2	Exposure to impact of regulatory statutes on process development.
CO 3	Explain Drugs and Cosmetics act, Drug price control order and regulations therein.
CO 4	Explain the regulatory pathways for new drug application and generic product
	development

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Schedule governing pharmaceutical product	1,2
	development	
2	ICH guidelines	1,2
3	Documentation for pharmaceuticals	1,2,4
4	Introduction to regulatory aspects of	1,2,4
	pharmaceuticals	
5	Drug Master file (DMF)	1,2
6	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines	1,2,3,4,5
7	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines	1,2,3,4,5
8	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines	1,2,3,4,5
9	Comparison of Indian, European and rest of the world Regulatory procedure	2,5

Department of Pharmaceutical Engineering

Course Code: SEPE4020

Course Name: Pharmaceutical Instrumental Analysis

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teac	ching Scheme	e (Hours/We	eek)		Examination Scheme (Marks)					
Theory	Dragtical	Tutorial	utorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	05	40	60	20	30	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know the application of instrumental methods in qualitative and quantitative analysis of drugs.
- To know the knowledge on the principles and instrumentation of spectroscopic and chromatographic technique.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	UV Visible spectroscopy Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations. Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors- Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode. Applications - Spectrophotometric titrations, Single component and multi component analysis	10	15					
2.	Fluorimetry Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications	05	15					
3.	IR spectroscopy Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications Flame Photometry-Principle, interferences, instrumentation and applications Atomic absorption spectroscopy- Principle, interferences, instrumentation and applications.	10	20					

	Nepheloturbidometry- Principle, instrumentation and applications		
	Section II		
Module	Content	Hours	Weightage
No.			in %
4.	Gas chromatography - Introduction, theory, instrumentation, derivatization, temperature programming, advantages, disadvantages and applications. High performance liquid chromatography (HPLC)-Introduction, theory, instrumentation, advantages and applications.	05	20
5.	Introduction to chromatography Adsorption and partition column chromatography- Methodology, advantages, disadvantages and applications. Thin layer chromatography- Introduction, Principle, Methodology, Rf values, advantages, disadvantages and applications.	10	20
6.	Ion exchange chromatography- Introduction, classification, ion exchange resins, properties, mechanism of ion exchange process, factors affecting ion exchange, methodology and applications.	05	10

List Of Experiments

Sr. No.	Experiment List	Hours
1.	Determination of absorption maxima and effect of solvents on	04
1.	absorption	04
2.	Estimation of dextrose by colorimetry	04
3	Estimation of sulfanilamide by colorimetry	04
4.	Simultaneous estimation of ibuprofen and paracetamol by UV	04
5.	Assay of paracetamol by UV- Spectrophotometry	04
6.	Estimation of quinine sulfate by fluorimetry	04
7.	Study of quenching of fluorescence	04
8.	Determination of sodium by flame photometry	02

Text Book(s):

Title	Author/s	Publication
Instrumental Methods of Chemical	B.K Sharma	Nirali Publications
Analysis		
Organic spectroscopy	Y.R Sharma	Penton Publications

Reference Book(s):

Title	Author/s	Publication
Organic spectroscopy	William Kemp	Zort Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

THICH CHIC COIN	biction of the course, the students will be able to:		
SEPE4020	PHARMACEUTICAL INSTRUMENTAL ANALYSIS		
CO 1	Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis.		
CO 2	Understand the chromatographic separation and analysis of drugs		
CO 3	Perform quantitative & qualitative analysis of drugs using various analytical		
	instruments.		
CO 4	understand selected instrumental analytical techniques (spectroscopic and chromatographic methods) and differentiate with volumetric analysis.		

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	UV Visible spectroscopy	1,2
2	Fluorimetry	1,2,5
3	IR spectroscopy	1,5
4	Gas chromatography	1,3,5
5	Introduction to chromatography	1,2
6	Ion exchange chromatography	1,2,5

Department of Pharmaceutical Engineering

Course Code: SEPE4030

Course Name: Dosage Formulation Design

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week) Examination Scheme (Marks)			Exami						
Theory	Dragtical	Tutorial	Cnodit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To provide basics of regulatory requirements of pharmaceuticals.
- To provide basics of good manufacturing practices, scientific and risk-based product development approached, validations and regulatory requirements of pharmaceuticals

	Section I				
Module No.	Content	Hours	Weightage in %		
	Preformulation studies:				
1.	a) Study of physical properties of drug like physical form, particle size, shape, density, wetting, dielectric constant, dissolution and organoleptic property and their effect on formulation, stability and bioavailability. b) Study of chemical properties of drugs like hydrolysis, oxidation, reduction, polymorphisms, racemization, polymerization etc., and their influence on formulation and stability of products. c) Study of prodrugs in solving problems related to stability, bioavailability and elegance of formulations.	10	20		
2.	Pharmaceutical necessities: Study of following adjuvant in pharmaceutical products: Natural Gums, bio degradable polymers, semi-synthetic cellulosic derivatives, and polymers for achieving modified drug release.	07	15		
3.	Stability of pharmaceuticals: a) Kinetic principles and stability testing: Reaction rate and order, acid base catalysis, decomposition reactions and stabilization of pharmaceuticals. b) Stability of formulation, factors affecting formulation stability, MKT, climatic zones, matrixing and bracketing instability study, accelerated stability testing, real time stability. Current WHO, USFDA	06	15		

	and stability testing as per ICH guidelines for		
	pharmaceutical drug substances and drug products. c)		
	Product stability: Requirements, shelf-life, overages,		
	containers, closures. d) Overage calculations		
Module No.	Content	Hours	Weightage in %
	Biopharmaceutics:		
İ	a) Introduction to biopharmaceutics and its role in		
	formulation development. b) Passage of drugs across		
4.	biological barriers (passive diffusion, active transport,	08	20
	facilitated diffusion and pinocytosis. c) Factors influencing	00	20
	absorption, - physiochemical, physiological and		
	pharmaceutical. d) Drug distribution in the body, plasma		
	protein binding and drug excretion		
	Bioavailability and Bioequivalence:		
	a) Measures of bioavailability, Cmax, tmax and area under		
5.	the curve (AUC). b) Design of single dose bio-equivalence	07	15
	study and relevant statistics. c) Review of regulatory		
	requirements for conduction of bioequivalent studies		
	Introduction to BCS and dissolution study:		
	Definition: BCS, BDDCS (Biopharmaceutical Drug		
	Disposition Classification System), Dissolution		
	mechanisms, Factors affecting dissolution, Intrinsic	0.0	15
6.	dissolution rate measurement, Dissolution apparatus for	06	15
	various dosage forms, Dissolution profile comparison using		
1	model independent method (similarity factor, dissimilarity		
İ	factor).		

Text Book(s):

Title		Author/s	Publication
Applied	Biopharmaceutics and	Leon Shargel, Susanna Wu-	McGraw-Hill
Pharmacokin	netics	Pong and Andrew B. C. Yu.	Education, 2015
The Theory	and Practice of Industrial	L Lachman, H Lieberman and J	CBS Publishers &
Pharmacy		Kanig	Distributors

Reference Book(s):

Reference Book(3):		
Title	Author/s	Publication
		Technomic Publishing
		Company, Inc., New Holland
		Avenue, Lancaster,
Pharmaceutical Preformulation	Carstensen JT	Pennysylvania, USA
	I in de A Felter	Mack Publishing Company,
Remington's Pharmaceutical Sciences	Linda A. Felton	Easton, Pennsylvania

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of two assignment which consists of 10 Marks of Evaluation.

• End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

DOSAGE FORMULATION DESIGN			
Classify different dosage forms and apply principles of pharmaceutical science in			
formulation and dispensing the various dosage forms.			
Explain various unit operations in the design and manufacture of dosage forms			
and describe preventive measures of corrosion and concept of fluid flow			
Develop dosage form and related concern for design of capsule dosage form.			
Evaluate the quality of different dosage form as per I.P. monographs.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Preformulation studies	1,2,3
2	Pharmaceutical necessities	1,2,4
3	Stability of pharmaceuticals	1,2,4
4	Biopharmaceutics	1,2,4,5
5	Bioavailability and Bioequivalence	1,2,5
6	Introduction to BCS and dissolution study	1,2,3,4,5

Department of Pharmaceutical Engineering

Course Code: SEPE4040

Course Name: Computer Application in Pharmaceutical Engineering

Prerequisite Course/s: --

Teaching & Examination Scheme:

Tead	Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)			
Theory	Dragtigal Tutorial		restical Tutorial Credit		Practical Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	02	00	05	40	60	20	30	00	00	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To know the introduction Database, Database Management system, computer application in clinical studies and use of databases.

• know the various applications of databases in pharmacy

	Section I									
Module No.	Content	Hours	Weightage in %							
1.	Number system : Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One's complement ,Two's complement method, binary multiplication, binary division.	10	20							
2.	Concept of Information Systems and Software: Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project.	10	20							
3.	Web technologies : Introduction to HTML, XML ,CSS and Programming languages, introduction to web servers and Server Products Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database.	5	10							
	Section II									
Module No.	Content	Hours	Weightage in %							
4.	Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile technology and adherence monitoring Diagnostic System,	10	20							

	Lab-diagnostic System, Patient Monitoring System,		
	Pharma Information System		
	Bioinformatics: Introduction, Objective of Bioinformatics,		
5.	Bioinformatics Databases, Concept of Bioinformatics, Impact	05	20
	of Bioinformatics in Vaccine Discovery		
	Computers as data analysis in Preclinical development:		
6.	Chromatographic dada analysis(CDS), Laboratory	05	10
0.	Information management System (LIMS) and Text	03	10
	Information Management System(TIMS)		

List Of Experiments

Sr. No.	Experiment List	Hours
1.	Design a questionnaire using a word processing package to gather	04
2	information Country MITML and a second plant of the second plant o	0.4
2.	Create a HTML web page to show personal information.	04
3.	Retrieve the information of a drug and its adverse effects using online	04
4.	Creating mailing labels Using Label Wizard, generating label in MS	04
5.	Design a form in MS Access to view, add, delete and modify the patient	04
6.	Generating report and printing the report from patient database	04
7.	Creating invoice table using – MS Access	04
8.	Drug information storage and retrieval using MS Access	02

Text Book(s):

Title			Author/s	Publication
Computer	Application	in	Sean Ekins –	A John Willey and Sons, INC.,
Pharmaceutical	Research	and	Wiley-	Publication, USA
Development -			Interscience	

Reference Book(s):

Title	Author/s	Publication
		CBS Publishers and
Bioinformatics (Concept, Skills and		Distributors, 4596/1- A, 11 Darya
Applications)	S.C.Rastogi	Gani, New Delhi – 110 002(INDIA)

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

THICE COM	pietien er the edulee) the stadents will be able to
SEPE4040	COMPUTER APPLICATION IN PHARMACEUTICAL ENGINEERING
CO 1	Understand different types of databases, applications of computers
	and databases in pharmacy.
CO 2	Illustrate the concept of number system in computers.
CO 3	Understand web technologies such as HTML, XML, CSS, programming languages, Web
	servers and pharmacy drug database.
CO 4	Explain about bioinformatics and its impact in vaccine discovery.

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	

Module No	Content	RBT Level
1	Number system	1,2,3
2	Concept of Information Systems and Software	1,2
3	Web technologies	1,2,3
4	Web technologies	1,2,3
5	Application of computers in Pharmacy	1,4
6	Bioinformatics	1,3
7	Computers as data analysis in Preclinical development	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE4910

Course Name: Industry Aligned Learning-V

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)								
Theory	Dragtical	ractical Tutorial		tical Tabasial Condit	Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	00	00	03	100	00	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To give idea to the students related to documentation and records, laboratory practices and engineering practices.
- Know the principles of problem solving related to pharma industry.

Course Content:

	Section I									
Module	Content	Hours	Weightage							
No.			in %							
1.	Documentation and Records	20	30							
2.	Project Management for Pharmaceutical Industry	10	20							
	Section II									
Module	Content	Hours	Weightage							
No.			in %							
3.	Statistical and Problem-Solving Tools for continual	15	50							
3.	improvement	13	30							

Text Book(s):

10.0200(0).					
Title	Author/s	Publication			
ICH Guideline Q10	Global Society	Indian Press			

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE4910	INDUSTRY ALIGNED LEARNING-V
CO 1	Generate competency in accordance with current regulatory guidelines related to
	documentations.
CO 2	Relate the basic concepts and fundamentals of pharmaceutical industry.
CO 3	Implement various aspects of project management.
CO 4	Illustrate the concepts of Statistical and Problem-Solving Tools.

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Documentation and Records	1,2,3
2	Project Management for Pharmaceutical Industry	1,2,3
3	Statistical and Problem-Solving Tools for continual improvement	1,2,3
	continual improvement	

Department of Pharmaceutical Engineering

Course Code: SEPE4930

Course Name: Project/Training Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)		Examination Scheme (Marks)								
Theory	Theory Practical Tutorial		Credit	Theory Pra		Prac	ctical	Tutorial		Total
Theory	Theory Fractical Tutorial	CE		ESE	CE	ESE	CE	ESE	Total	
00	17	00	17	00	00	200	300	00	00	500

CE: Continuous Evaluation, ESE: End Semester Exam

Outline of the Course:

Proiect

- The project will be aligned with the aims of the engineering programme and its areas of specialization and shall be based on the recent trends in technology.
- The student shall carry out a comprehensive project at relevant academic / R&D / industrial organization.
- The student is required to submit a project report based on the work carried out.

Training

- The aim of this course is to use the internship experience to enable students to develop their engineering skills and practices.
- The student will be placed in industry/organization for 12 to 18 weeks and assessed for academic credit.
- The students may select industry on their own or one which is offered by institute.
- Students are expected to experience a real-life engineering workplace and understand how their engineering and professional skills can be utilized in industry.
- The student is required to submit a project report based on the work carried out.

Course Outcome(s):

After completion of the course, the students will be able to

SEPE4930	PROJECT / TRAINING
CO 1	Apply fundamental and disciplinary concepts and methods in ways appropriate to
	their principal areas of study.
CO 2	Determine the challenges and future potential for his/her internship organization
CO 2	in particular and the sector in general.
CO 3	Test the theoretical learning in practical situations by accomplishing the tasks
	assigned during the internship period.
	Apply various soft skills such as time management, positive attitude and
CO 4	communication skills during performance of the tasks assigned in internship
	organization.
CO 5	Analyze the functioning of internship organization and recommend changes for
	improvement in processes.